Compare commits
1 Commits
midend-llv
...
constPropa
| Author | SHA1 | Date | |
|---|---|---|---|
| a5318a2c5c |
220
Pass_ID_List.md
220
Pass_ID_List.md
@@ -14,220 +14,10 @@
|
||||
|
||||
Mem2Reg 遍的主要目标是将那些不必要的、只用于局部标量变量的内存分配 (alloca 指令) 消除,并将这些变量的值转换为 SSA 形式。这有助于减少内存访问,提高代码效率,并为后续的优化创造更好的条件。
|
||||
|
||||
通过Mem2Reg理解删除指令时对use关系的维护:
|
||||
|
||||
在 `Mem2Reg` 优化遍中,当 `load` 和 `store` 指令被删除时,其 `use` 关系(即它们作为操作数与其他 `Value` 对象之间的连接)的正确消除是一个关键问题,尤其涉及到 `AllocaInst`。
|
||||
|
||||
结合您提供的 `Mem2RegContext::renameVariables` 代码和我们之前讨论的 `usedelete` 逻辑,下面是 `use` 关系如何被正确消除的详细过程:
|
||||
|
||||
### 问题回顾:`Use` 关系的双向性
|
||||
|
||||
在您的 IR 设计中,`Use` 对象扮演着连接 `User`(使用者,如 `LoadInst`)和 `Value`(被使用者,如 `AllocaInst`)的双向角色:
|
||||
|
||||
* 一个 `User` 持有对其操作数 `Value` 的 `Use` 对象(通过 `User::operands` 列表)。
|
||||
* 一个 `Value` 持有所有使用它的 `User` 的 `Use` 对象(通过 `Value::uses` 列表)。
|
||||
|
||||
原始问题是:当一个 `LoadInst` 或 `StoreInst` 被删除时,如果不对其作为操作数与 `AllocaInst` 之间的 `Use` 关系进行明确清理,`AllocaInst` 的 `uses` 列表中就会留下指向已删除 `LoadInst` / `StoreInst` 的 `Use` 对象,导致内部的 `User*` 指针悬空,在后续访问时引发 `segmentation fault`。
|
||||
|
||||
### `Mem2Reg` 中 `load`/`store` 指令的删除行为
|
||||
|
||||
在 `Mem2RegContext::renameVariables` 函数中,`load` 和 `store` 指令被处理时,其行为如下:
|
||||
|
||||
1. **处理 `LoadInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `LoadInst` 时,其用途会被 `replaceAllUsesWith(allocaToValueStackMap[alloca].top())` 替换。这意味着任何原本使用 `LoadInst` 本身计算结果的指令,现在都直接使用 SSA 值栈顶部的 `Value`。
|
||||
**重点:** 这一步处理的是 `LoadInst` 作为**被使用的值 (Value)** 时,其 `uses` 列表的清理。即,将 `LoadInst` 的所有使用者重定向到新的 SSA 值,并把这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。
|
||||
|
||||
2. **处理 `StoreInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `StoreInst` 时,`StoreInst` 存储的值会被压入值栈。`StoreInst` 本身并不产生可被其他指令直接使用的值(其类型是 `void`),所以它没有 `uses` 列表需要替换。
|
||||
**重点:** `StoreInst` 的主要作用是更新内存状态,在 SSA 形式下,它被移除后需要清理它作为**使用者 (User)** 时的操作数关系。
|
||||
|
||||
在这两种情况下,一旦 `load` 或 `store` 指令的 SSA 转换完成,它们都会通过 `instIter = SysYIROptUtils::usedelete(instIter)` 被显式删除。
|
||||
|
||||
### `SysYIROptUtils::usedelete` 如何正确消除 `Use` 关系
|
||||
|
||||
关键在于对 `SysYIROptUtils::usedelete` 函数的修改,使其在删除指令时,同时处理该指令作为 `User` 和 `Value` 的两种 `Use` 关系:
|
||||
|
||||
1. **清理指令作为 `Value` 时的 `uses` 列表 (由 `replaceAllUsesWith` 完成):**
|
||||
在 `usedelete` 函数中,`inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()))` 的调用至关重要。这确保了:
|
||||
* 如果被删除的 `Instruction`(例如 `LoadInst`)产生了结果值并被其他指令使用,所有这些使用者都会被重定向到 `UndefinedValue`(或者 `Mem2Reg` 中具体的 SSA 值)。
|
||||
* 这个过程会遍历 `LoadInst` 的 `uses` 列表,并将这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。这意味着 `LoadInst` 自己不再被任何其他指令使用。
|
||||
|
||||
2. **清理指令作为 `User` 时其操作数的 `uses` 列表 (由 `RemoveUserOperandUses` 完成):**
|
||||
这是您提出的、并已集成到 `usedelete` 中的关键改进点。对于一个被删除的 `Instruction`(它同时也是 `User`),我们需要清理它**自己使用的操作数**所维护的 `use` 关系。
|
||||
* 例如,`LoadInst %op1` 使用了 `%op1`(一个 `AllocaInst`)。当 `LoadInst` 被删除时,`AllocaInst` 的 `uses` 列表中有一个 `Use` 对象指向这个 `LoadInst`。
|
||||
* `RemoveUserOperandUses` 函数会遍历被删除 `User`(即 `LoadInst` 或 `StoreInst`)的 `operands` 列表。
|
||||
* 对于 `operands` 列表中的每个 `std::shared_ptr<Use> use_ptr`,它会获取 `Use` 对象内部指向的 `Value`(例如 `AllocaInst*`),然后调用 `value->removeUse(use_ptr)`。
|
||||
* 这个 `removeUse` 调用会负责将 `use_ptr` 从 `AllocaInst` 的 `uses` 列表中删除。
|
||||
|
||||
### 总结
|
||||
|
||||
通过在 `SysYIROptUtils::usedelete` 中同时执行这两个步骤:
|
||||
|
||||
* `replaceAllUsesWith`:处理被删除指令**作为结果被使用**时的 `use` 关系。
|
||||
* `RemoveUserOperandUses`:处理被删除指令**作为使用者(User)时,其操作数**的 `use` 关系。
|
||||
|
||||
这就确保了当 `Mem2Reg` 遍历并删除 `load` 和 `store` 指令时,无论是它们作为 `Value` 的使用者,还是它们作为 `User` 的操作数,所有相关的 `Use` 对象都能被正确地从 `Value` 的 `uses` 列表中移除,从而避免了悬空指针和后续的 `segmentation fault`。
|
||||
|
||||
最后,当所有指向某个 `AllocaInst` 的 `load` 和 `store` 指令都被移除后,`AllocaInst` 的 `uses` 列表将变得干净(只包含 Phi 指令,如果它们在 SSA 转换中需要保留 Alloca 作为操作数),这时在 `Mem2RegContext::cleanup()` 阶段,`SysYIROptUtils::usedelete(alloca)` 就可以安全地删除 `AllocaInst` 本身了。
|
||||
|
||||
## Reg2Mem
|
||||
|
||||
我们的Reg2Mem 遍的主要目标是作为 Mem2Reg 的一种逆操作,但更具体是解决后端无法识别 PhiInst 指令的问题。主要的速录是将函数参数和 PhiInst 指令的结果从 SSA 形式转换回内存形式,通过插入 alloca、load 和 store 指令来实现。其他非 Phi 的指令结果将保持 SSA 形式。
|
||||
|
||||
## SCCP
|
||||
|
||||
SCCP(稀疏条件常量传播)是一种编译器优化技术,它结合了常量传播和死代码消除。其核心思想是在程序执行过程中,尝试识别并替换那些在编译时就能确定其值的变量(常量),同时移除那些永远不会被执行到的代码块(不可达代码)。
|
||||
|
||||
以下是 SCCP 的实现思路:
|
||||
|
||||
1. 核心数据结构与工作列表:
|
||||
|
||||
Lattice 值(Lattice Value): SCCP 使用三值格(Three-Valued Lattice)来表示变量的状态:
|
||||
|
||||
Top (T): 初始状态,表示变量的值未知,但可能是一个常量。
|
||||
|
||||
Constant (C): 表示变量的值已经确定为一个具体的常量。
|
||||
|
||||
Bottom (⊥): 表示变量的值不确定或不是一个常量(例如,它可能在运行时有多个不同的值,或者从内存中加载)。一旦变量状态变为 Bottom,它就不能再变回 Constant 或 Top。
|
||||
|
||||
SSAPValue: 封装了 Lattice 值和常量具体值(如果状态是 Constant)。
|
||||
|
||||
*valState (map<Value, SSAPValue>):** 存储程序中每个 Value(变量、指令结果等)的当前 SCCP Lattice 状态。
|
||||
|
||||
*ExecutableBlocks (set<BasicBlock>):** 存储在分析过程中被确定为可执行的基本块。
|
||||
|
||||
工作列表 (Worklists):
|
||||
|
||||
cfgWorkList (queue<pair<BasicBlock, BasicBlock>>):** 存储待处理的控制流图(CFG)边。当一个块被标记为可执行时,它的后继边会被添加到这个列表。
|
||||
|
||||
*ssaWorkList (queue<Instruction>):** 存储待处理的 SSA (Static Single Assignment) 指令。当一个指令的任何操作数的状态发生变化时,该指令就会被添加到这个列表,需要重新评估。
|
||||
|
||||
2. 初始化:
|
||||
|
||||
所有 Value 的状态都被初始化为 Top。
|
||||
|
||||
所有基本块都被初始化为不可执行。
|
||||
|
||||
函数的入口基本块被标记为可执行,并且该块中的所有指令被添加到 ssaWorkList。
|
||||
|
||||
3. 迭代过程 (Fixed-Point Iteration):
|
||||
|
||||
SCCP 的核心是一个迭代过程,它交替处理 CFG 工作列表和 SSA 工作列表,直到达到一个不动点(即没有更多的状态变化)。
|
||||
|
||||
处理 cfgWorkList:
|
||||
|
||||
从 cfgWorkList 中取出一个边 (prev, next)。
|
||||
|
||||
如果 next 块之前是不可执行的,现在通过 prev 块可达,则将其标记为可执行 (markBlockExecutable)。
|
||||
|
||||
一旦 next 块变为可执行,其内部的所有指令(特别是 Phi 指令)都需要被重新评估,因此将它们添加到 ssaWorkList。
|
||||
|
||||
处理 ssaWorkList:
|
||||
|
||||
从 ssaWorkList 中取出一个指令 inst。
|
||||
|
||||
重要: 只有当 inst 所在的块是可执行的,才处理该指令。不可执行块中的指令不参与常量传播。
|
||||
|
||||
计算新的 Lattice 值 (computeLatticeValue): 根据指令类型和其操作数的当前 Lattice 状态,计算 inst 的新的 Lattice 状态。
|
||||
|
||||
常量折叠: 如果所有操作数都是常量,则可以直接执行运算并得到一个新的常量结果。
|
||||
|
||||
Bottom 传播: 如果任何操作数是 Bottom,或者运算规则导致不确定(例如除以零),则结果为 Bottom。
|
||||
|
||||
Phi 指令的特殊处理: Phi 指令的值取决于其所有可执行的前驱块传入的值。
|
||||
|
||||
如果所有可执行前驱都提供了相同的常量 C,则 Phi 结果为 C。
|
||||
|
||||
如果有任何可执行前驱提供了 Bottom,或者不同的可执行前驱提供了不同的常量,则 Phi 结果为 Bottom。
|
||||
|
||||
如果所有可执行前驱都提供了 Top,则 Phi 结果仍为 Top。
|
||||
|
||||
更新状态: 如果 inst 的新计算出的 Lattice 值与它当前存储的值不同,则更新 valState[inst]。
|
||||
|
||||
传播变化: 如果 inst 的状态发生变化,那么所有使用 inst 作为操作数的指令都可能受到影响,需要重新评估。因此,将 inst 的所有使用者添加到 ssaWorkList。
|
||||
|
||||
处理终结符指令 (BranchInst, ReturnInst):
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数变为常量:
|
||||
|
||||
如果条件为真,则只有真分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件为假,则只有假分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件不是常量(Top 或 Bottom),则两个分支都可能被执行,将两边的边都添加到 cfgWorkList。
|
||||
|
||||
这会影响 CFG 的可达性分析,可能导致新的块被标记为可执行。
|
||||
|
||||
4. 应用优化 (Transformation):
|
||||
|
||||
当两个工作列表都为空,达到不动点后,程序代码开始进行实际的修改:
|
||||
|
||||
常量替换:
|
||||
|
||||
遍历所有指令。如果指令的 valState 为 Constant,则用相应的 ConstantValue 替换该指令的所有用途 (replaceAllUsesWith)。
|
||||
|
||||
将该指令标记为待删除。
|
||||
|
||||
对于指令的操作数,如果其 valState 为 Constant,则直接将操作数替换为对应的 ConstantValue(常量折叠)。
|
||||
|
||||
删除死指令: 遍历所有标记为待删除的指令,并从其父基本块中删除它们。
|
||||
|
||||
删除不可达基本块: 遍历函数中的所有基本块。如果一个基本块没有被标记为可执行 (ExecutableBlocks 中不存在),则将其从函数中删除。但入口块不能删除。
|
||||
|
||||
简化分支指令:
|
||||
|
||||
遍历所有可执行的基本块的终结符指令。
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数在 valState 中是 Constant:
|
||||
|
||||
如果条件为真,则将该条件分支替换为一个无条件跳转到真分支目标块的指令。
|
||||
|
||||
如果条件为假,则将该条件分支替换为一个无条件跳转到假分支目标块的指令。
|
||||
|
||||
更新 CFG,移除不可达的分支边和其前驱信息。
|
||||
|
||||
computeLatticeValue 的具体逻辑:
|
||||
|
||||
这个函数是 SCCP 的核心逻辑,它定义了如何根据指令类型和操作数的当前 Lattice 状态来计算指令结果的 Lattice 状态。
|
||||
|
||||
二元运算 (Add, Sub, Mul, Div, Rem, ICmp, And, Or):
|
||||
|
||||
如果任何一个操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果任何一个操作数是 Top,结果就是 Top。
|
||||
|
||||
如果两个操作数都是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
一元运算 (Neg, Not):
|
||||
|
||||
如果操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果操作数是 Top,结果就是 Top。
|
||||
|
||||
如果操作数是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
Load 指令: 通常情况下,Load 的结果会被标记为 Bottom,因为内存内容通常在编译时无法确定。但如果加载的是已知的全局常量,可能可以确定。在提供的代码中,它通常返回 Bottom。
|
||||
|
||||
Store 指令: Store 不产生值,所以其 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
Call 指令: 大多数 Call 指令(尤其是对外部或有副作用的函数)的结果都是 Bottom。对于纯函数,如果所有参数都是常量,理论上可以折叠,但这需要额外的分析。
|
||||
|
||||
GetElementPtr (GEP) 指令: GEP 计算内存地址。如果所有索引都是常量,地址本身是常量。但 SCCP 关注的是数据值,因此这里通常返回 Bottom,除非有特定的指针常量跟踪。
|
||||
|
||||
Phi 指令: 如上所述,基于所有可执行前驱的传入值进行聚合。
|
||||
|
||||
Alloc 指令: Alloc 分配内存,返回一个指针。其内容通常是 Bottom。
|
||||
|
||||
Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其他指令的值,通常 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
类型转换 (ZExt, SExt, Trunc, FtoI, ItoF): 如果操作数是 Constant,则执行相应的类型转换,结果仍为 Constant。对于浮点数转换,由于 SSAPValue 的 constantVal 为 int 类型,所以对浮点数的操作会保守地返回 Bottom。
|
||||
|
||||
未处理的指令: 默认情况下,任何未明确处理的指令都被保守地假定为产生 Bottom 值。
|
||||
|
||||
浮点数处理的注意事项:
|
||||
|
||||
在提供的代码中,SSAPValue 的 constantVal 是 int 类型。这使得浮点数常量传播变得复杂。对于浮点数相关的指令(kFAdd, kFMul, kFCmp, kFNeg, kFNot, kItoF, kFtoI 等),如果不能将浮点值准确地存储在 int 中,或者不能可靠地执行浮点运算,那么通常会保守地将结果设置为 Bottom。一个更完善的 SCCP 实现会使用 std::variant<int, float> 或独立的浮点常量存储来处理浮点数。
|
||||
|
||||
|
||||
# 后续优化可能涉及的改动
|
||||
|
||||
@@ -235,12 +25,4 @@ Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其
|
||||
|
||||
好处:优化友好性,方便mem2reg提升
|
||||
目前没有实现这个机制,如果想要实现首先解决同一函数不同域的同名变量命名区分
|
||||
需要保证符号表能正确维护域中的局部变量
|
||||
|
||||
|
||||
# 关于中端优化提升编译器性能的TODO
|
||||
|
||||
## usedelete_withinstdelte方法
|
||||
|
||||
这个方法删除了use关系并移除了指令,逻辑是根据Instruction* inst去find对应的迭代器并erase
|
||||
有些情况下外部持有迭代器和inst,可以省略find过程
|
||||
需要保证符号表能正确维护域中的局部变量
|
||||
@@ -60,7 +60,11 @@ display_file_content() {
|
||||
# 清理临时文件的函数
|
||||
clean_tmp() {
|
||||
echo "正在清理临时目录: ${TMP_DIR}"
|
||||
rm -rf "${TMP_DIR}"/*
|
||||
rm -rf "${TMP_DIR}"/*.s \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64 \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.actual_out \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.expected_stdout \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.o
|
||||
echo "清理完成。"
|
||||
}
|
||||
|
||||
|
||||
@@ -2,67 +2,64 @@
|
||||
|
||||
# runit-single.sh - 用于编译和测试单个或少量 SysY 程序的脚本
|
||||
# 模仿 runit.sh 的功能,但以具体文件路径作为输入。
|
||||
# 此脚本应该位于 mysysy/script/
|
||||
|
||||
export ASAN_OPTIONS=detect_leaks=0
|
||||
|
||||
# --- 配置区 ---
|
||||
# 请根据你的环境修改这些路径
|
||||
# 假设此脚本位于你的项目根目录或一个脚本目录中
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
|
||||
# 默认寻找项目根目录下的 build 和 lib
|
||||
BUILD_BIN_DIR="${SCRIPT_DIR}/../build/bin"
|
||||
LIB_DIR="${SCRIPT_DIR}/../lib"
|
||||
# 临时文件会存储在脚本所在目录的 tmp 子目录中
|
||||
TMP_DIR="${SCRIPT_DIR}/tmp"
|
||||
|
||||
# 定义编译器和模拟器
|
||||
SYSYC="${BUILD_BIN_DIR}/sysyc"
|
||||
LLC_CMD="llc-19" # 新增
|
||||
GCC_RISCV64="riscv64-linux-gnu-gcc"
|
||||
QEMU_RISCV64="qemu-riscv64"
|
||||
|
||||
# --- 初始化变量 ---
|
||||
EXECUTE_MODE=false
|
||||
IR_EXECUTE_MODE=false # 新增
|
||||
CLEAN_MODE=false
|
||||
OPTIMIZE_FLAG=""
|
||||
SYSYC_TIMEOUT=30
|
||||
LLC_TIMEOUT=10 # 新增
|
||||
GCC_TIMEOUT=10
|
||||
EXEC_TIMEOUT=30
|
||||
MAX_OUTPUT_LINES=20
|
||||
SY_FILES=()
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 自动化执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
SY_FILES=() # 存储用户提供的 .sy 文件列表
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST=""
|
||||
INTERRUPTED=false # 新增
|
||||
|
||||
# =================================================================
|
||||
# --- 函数定义 ---
|
||||
# =================================================================
|
||||
show_help() {
|
||||
echo "用法: $0 [文件1.sy] [文件2.sy] ... [选项]"
|
||||
echo "编译并测试指定的 .sy 文件。必须提供 -e 或 -eir 之一。"
|
||||
echo "编译并测试指定的 .sy 文件。"
|
||||
echo ""
|
||||
echo "如果找到对应的 .in/.out 文件,则进行自动化测试。否则,进入交互模式。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -e 通过汇编运行测试 (sysyc -> gcc -> qemu)。"
|
||||
echo " -eir 通过IR运行测试 (sysyc -> llc -> gcc -> qemu)。"
|
||||
echo " -e, --executable 编译为可执行文件并运行测试 (必须)。"
|
||||
echo " -c, --clean 清理 tmp 临时目录下的所有文件。"
|
||||
echo " -O1 启用 sysyc 的 -O1 优化。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 30)。"
|
||||
echo " -lct N 设置 llc-19 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 自动化执行超时为 N 秒 (默认: 30)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 20)。"
|
||||
echo " -et N 设置 qemu 自动化执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
echo ""
|
||||
echo "可在任何时候按 Ctrl+C 来中断测试并显示当前已完成的测例总结。"
|
||||
}
|
||||
|
||||
# --- 新增功能: 显示文件内容并根据行数截断 ---
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
if [ ! -f "$file_path" ]; then return; fi
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
@@ -71,79 +68,51 @@ display_file_content() {
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 新增:总结报告函数 ---
|
||||
print_summary() {
|
||||
local total_cases=${#SY_FILES[@]}
|
||||
echo ""
|
||||
echo "======================================================================"
|
||||
if [ "$INTERRUPTED" = true ]; then
|
||||
echo -e "\e[33m测试被中断。正在汇总已完成的结果...\e[0m"
|
||||
else
|
||||
echo "所有测试完成"
|
||||
fi
|
||||
|
||||
local failed_count
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
failed_count=$(echo -e -n "${FAILED_CASES_LIST}" | wc -l)
|
||||
else
|
||||
failed_count=0
|
||||
fi
|
||||
local executed_count=$((PASSED_CASES + failed_count))
|
||||
|
||||
echo "测试结果: [通过: ${PASSED_CASES}, 失败: ${failed_count}, 已执行: ${executed_count}/${total_cases}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
printf "%b" "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
echo "======================================================================"
|
||||
|
||||
if [ "$failed_count" -gt 0 ]; then
|
||||
exit 1
|
||||
else
|
||||
exit 0
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 新增:SIGINT 信号处理函数 ---
|
||||
handle_sigint() {
|
||||
INTERRUPTED=true
|
||||
print_summary
|
||||
}
|
||||
|
||||
# =================================================================
|
||||
# --- 主逻辑开始 ---
|
||||
# =================================================================
|
||||
|
||||
# --- 新增:设置 trap 来捕获 SIGINT ---
|
||||
trap handle_sigint SIGINT
|
||||
|
||||
# --- 参数解析 ---
|
||||
# --- 本次修改点: 整个参数解析逻辑被重写 ---
|
||||
# 使用标准的 while 循环来健壮地处理任意顺序的参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-e|--executable) EXECUTE_MODE=true; shift ;;
|
||||
-eir) IR_EXECUTE_MODE=true; shift ;; # 新增
|
||||
-c|--clean) CLEAN_MODE=true; shift ;;
|
||||
-O1) OPTIMIZE_FLAG="-O1"; shift ;;
|
||||
-lct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then LLC_TIMEOUT="$2"; shift 2; else echo "错误: -lct 需要一个正整数参数。" >&2; exit 1; fi ;; # 新增
|
||||
-sct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-gct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-et) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-h|--help) show_help; exit 0 ;;
|
||||
-*) echo "未知选项: $1"; show_help; exit 1 ;;
|
||||
*)
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
shift # 消耗选项
|
||||
;;
|
||||
-c|--clean)
|
||||
CLEAN_MODE=true
|
||||
shift # 消耗选项
|
||||
;;
|
||||
-sct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-gct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-et)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
-*) # 未知选项
|
||||
echo "未知选项: $1"
|
||||
show_help
|
||||
exit 1
|
||||
;;
|
||||
*) # 其他参数被视为文件路径
|
||||
if [[ -f "$1" && "$1" == *.sy ]]; then
|
||||
SY_FILES+=("$1")
|
||||
else
|
||||
echo "警告: 无效文件或不是 .sy 文件,已忽略: $1"
|
||||
fi
|
||||
shift
|
||||
shift # 消耗文件参数
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
if ${CLEAN_MODE}; then
|
||||
echo "检测到 -c/--clean 选项,正在清空 ${TMP_DIR}..."
|
||||
if [ -d "${TMP_DIR}" ]; then
|
||||
@@ -152,22 +121,19 @@ if ${CLEAN_MODE}; then
|
||||
else
|
||||
echo "临时目录 ${TMP_DIR} 不存在,无需清理。"
|
||||
fi
|
||||
if [ ${#SY_FILES[@]} -eq 0 ] && ! ${EXECUTE_MODE} && ! ${IR_EXECUTE_MODE}; then
|
||||
|
||||
if [ ${#SY_FILES[@]} -eq 0 ] && ! ${EXECUTE_MODE}; then
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
if ! ${EXECUTE_MODE} && ! ${IR_EXECUTE_MODE}; then
|
||||
echo "错误: 请提供 -e 或 -eir 选项来运行测试。"
|
||||
# --- 主逻辑开始 ---
|
||||
if ! ${EXECUTE_MODE}; then
|
||||
echo "错误: 请提供 -e 或 --executable 选项来运行测试。"
|
||||
show_help
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ${EXECUTE_MODE} && ${IR_EXECUTE_MODE}; then
|
||||
echo -e "\e[31m错误: -e 和 -eir 选项不能同时使用。\e[0m" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ${#SY_FILES[@]} -eq 0 ]; then
|
||||
echo "错误: 未提供任何 .sy 文件作为输入。"
|
||||
show_help
|
||||
@@ -178,18 +144,18 @@ mkdir -p "${TMP_DIR}"
|
||||
TOTAL_CASES=${#SY_FILES[@]}
|
||||
|
||||
echo "SysY 单例测试运行器启动..."
|
||||
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, llc=${LLC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo ""
|
||||
|
||||
for sy_file in "${SY_FILES[@]}"; do
|
||||
is_passed=1
|
||||
compilation_ok=1
|
||||
base_name=$(basename "${sy_file}" .sy)
|
||||
source_dir=$(dirname "${sy_file}")
|
||||
|
||||
ir_file="${TMP_DIR}/${base_name}.ll"
|
||||
ir_file="${TMP_DIR}/${base_name}_sysyc_riscv64.ll"
|
||||
assembly_file="${TMP_DIR}/${base_name}.s"
|
||||
assembly_debug_file="${TMP_DIR}/${base_name}_d.s"
|
||||
executable_file="${TMP_DIR}/${base_name}"
|
||||
input_file="${source_dir}/${base_name}.in"
|
||||
output_reference_file="${source_dir}/${base_name}.out"
|
||||
@@ -198,39 +164,37 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
echo "======================================================================"
|
||||
echo "正在处理: ${sy_file}"
|
||||
|
||||
# --- 编译阶段 ---
|
||||
if ${IR_EXECUTE_MODE}; then
|
||||
# 路径1: sysyc -> llc -> gcc
|
||||
echo " [1/3] 使用 sysyc 编译为 IR (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" ${OPTIMIZE_FLAG} -o "${ir_file}"
|
||||
if [ $? -ne 0 ]; then echo -e "\e[31m错误: SysY (IR) 编译失败或超时。\e[0m"; compilation_ok=0; fi
|
||||
# 步骤 1: sysyc 编译
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" > "${ir_file}"
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR超时\e[0m"
|
||||
is_passed=0
|
||||
elif [ $SYSYC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
# timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s asmd "${sy_file}" > "${assembly_debug_file}" 2>&1
|
||||
|
||||
if [ "$compilation_ok" -eq 1 ]; then
|
||||
echo " [2/3] 使用 llc 编译为汇编 (超时 ${LLC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${LLC_TIMEOUT} "${LLC_CMD}" -march=riscv64 -mcpu=generic-rv64 -mattr=+m,+a,+f,+d,+c -filetype=asm "${ir_file}" -o "${assembly_file}"
|
||||
if [ $? -ne 0 ]; then echo -e "\e[31m错误: llc 编译失败或超时。\e[0m"; compilation_ok=0; fi
|
||||
fi
|
||||
|
||||
if [ "$compilation_ok" -eq 1 ]; then
|
||||
echo " [3/3] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
if [ $? -ne 0 ]; then echo -e "\e[31m错误: GCC 编译失败或超时。\e[0m"; compilation_ok=0; fi
|
||||
fi
|
||||
else # EXECUTE_MODE
|
||||
# 路径2: sysyc -> gcc
|
||||
echo " [1/2] 使用 sysyc 编译为汇编 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" ${OPTIMIZE_FLAG} -o "${assembly_file}"
|
||||
if [ $? -ne 0 ]; then echo -e "\e[31m错误: SysY (汇编) 编译失败或超时。\e[0m"; compilation_ok=0; fi
|
||||
|
||||
if [ "$compilation_ok" -eq 1 ]; then
|
||||
echo " [2/2] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
if [ $? -ne 0 ]; then echo -e "\e[31m错误: GCC 编译失败或超时。\e[0m"; compilation_ok=0; fi
|
||||
# 步骤 2: GCC 编译
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
fi
|
||||
|
||||
# --- 执行与测试阶段 (公共逻辑) ---
|
||||
if [ "$compilation_ok" -eq 1 ]; then
|
||||
# 步骤 3: 执行与测试
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
# 检查是自动化测试还是交互模式
|
||||
if [ -f "${input_file}" ] || [ -f "${output_reference_file}" ]; then
|
||||
# --- 自动化测试模式 ---
|
||||
echo " 检测到 .in/.out 文件,进入自动化测试模式..."
|
||||
@@ -253,26 +217,24 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; is_passed=0; fi
|
||||
|
||||
ret_ok=1
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; ret_ok=0; fi
|
||||
|
||||
out_ok=1
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; out_ok=0
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
|
||||
if [ "$ret_ok" -eq 1 ] && [ "$out_ok" -eq 1 ]; then echo -e "\e[32m 返回码与标准输出测试成功。\e[0m"; else is_passed=0; fi
|
||||
|
||||
else
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功。\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; is_passed=0
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
@@ -281,16 +243,20 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
fi
|
||||
else
|
||||
# --- 交互模式 ---
|
||||
echo -e "\e[33m\n 未找到 .in 或 .out 文件,进入交互模式...\e[0m"
|
||||
echo -e "\e[33m"
|
||||
echo " **********************************************************"
|
||||
echo " ** 未找到 .in 或 .out 文件,进入交互模式。 **"
|
||||
echo " ** 程序即将运行,你可以直接在终端中输入。 **"
|
||||
echo " ** 按下 Ctrl+D (EOF) 或以其他方式结束程序以继续。 **"
|
||||
echo " **********************************************************"
|
||||
echo -e "\e[0m"
|
||||
"${QEMU_RISCV64}" "${executable_file}"
|
||||
INTERACTIVE_RET_CODE=$?
|
||||
echo -e "\e[33m\n 交互模式执行完毕,程序返回码: ${INTERACTIVE_RET_CODE} (此结果未经验证)\e[0m"
|
||||
echo -e "\e[33m\n 交互模式执行完毕,程序返回码: ${INTERACTIVE_RET_CODE}\e[0m"
|
||||
echo " 注意: 交互模式的结果未经验证。"
|
||||
fi
|
||||
else
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
# --- 状态总结 ---
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo -e "\e[32m状态: 通过\e[0m"
|
||||
((PASSED_CASES++))
|
||||
@@ -301,4 +267,20 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
done
|
||||
|
||||
# --- 打印最终总结 ---
|
||||
print_summary
|
||||
echo "======================================================================"
|
||||
echo "所有测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "======================================================================"
|
||||
|
||||
if [ "$PASSED_CASES" -eq "$TOTAL_CASES" ]; then
|
||||
exit 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
470
script/runit.sh
470
script/runit.sh
@@ -1,41 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
# runit.sh - 用于编译和测试 SysY 程序的脚本
|
||||
# 此脚本应该位于 mysysy/script/
|
||||
|
||||
export ASAN_OPTIONS=detect_leaks=0
|
||||
# 此脚本应该位于 mysysy/test_script/
|
||||
|
||||
# 定义相对于脚本位置的目录
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
|
||||
TESTDATA_DIR="${SCRIPT_DIR}/../testdata"
|
||||
BUILD_BIN_DIR="${SCRIPT_DIR}/../build/bin"
|
||||
LIB_DIR="${SCRIPT_DIR}/../lib"
|
||||
# TMP_DIR="${SCRIPT_DIR}/tmp"
|
||||
TMP_DIR="${SCRIPT_DIR}/tmp"
|
||||
|
||||
# 定义编译器和模拟器
|
||||
SYSYC="${BUILD_BIN_DIR}/sysyc"
|
||||
LLC_CMD="llc-19"
|
||||
GCC_RISCV64="riscv64-linux-gnu-gcc"
|
||||
QEMU_RISCV64="qemu-riscv64"
|
||||
|
||||
# --- 状态变量 ---
|
||||
# --- 新增功能: 初始化变量 ---
|
||||
EXECUTE_MODE=false
|
||||
IR_EXECUTE_MODE=false
|
||||
OPTIMIZE_FLAG=""
|
||||
SYSYC_TIMEOUT=30
|
||||
LLC_TIMEOUT=10
|
||||
GCC_TIMEOUT=10
|
||||
EXEC_TIMEOUT=30
|
||||
MAX_OUTPUT_LINES=20
|
||||
TEST_SETS=()
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
TEST_SETS=() # 用于存储要运行的测试集
|
||||
TOTAL_CASES=0
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST=""
|
||||
INTERRUPTED=false # 新增:用于标记是否被中断
|
||||
|
||||
# =================================================================
|
||||
# --- 函数定义 ---
|
||||
# =================================================================
|
||||
FAILED_CASES_LIST="" # 用于存储未通过的测例列表
|
||||
|
||||
# 显示帮助信息的函数
|
||||
show_help() {
|
||||
@@ -43,32 +33,30 @@ show_help() {
|
||||
echo "此脚本用于按文件名前缀数字升序编译和测试 .sy 文件。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -e, --executable 编译为汇编并运行测试 (sysyc -> gcc -> qemu)。"
|
||||
echo " -eir 通过IR编译为可执行文件并运行测试 (sysyc -> llc -> gcc -> qemu)。"
|
||||
echo " -e, --executable 编译为可执行文件并运行测试。"
|
||||
echo " -c, --clean 清理 'tmp' 目录下的所有生成文件。"
|
||||
echo " -O1 启用 sysyc 的 -O1 优化。"
|
||||
echo " -set [f|h|p|all]... 指定要运行的测试集 (functional, h_functional, performance)。可多选,默认为 all。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 30)。"
|
||||
echo " -lct N 设置 llc-19 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 执行超时为 N 秒 (默认: 30)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 20)。"
|
||||
echo " -et N 设置 qemu 执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
echo ""
|
||||
echo "注意: 默认行为 (无 -e 或 -eir) 是将 .sy 文件同时编译为 .s (汇编) 和 .ll (IR),不执行。"
|
||||
echo " 可在任何时候按 Ctrl+C 来中断测试并显示当前已完成的测例总结。"
|
||||
}
|
||||
|
||||
|
||||
# 显示文件内容并根据行数截断的函数
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
if [ ! -f "$file_path" ]; then return; fi
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
@@ -83,90 +71,61 @@ clean_tmp() {
|
||||
rm -rf "${TMP_DIR}"/*
|
||||
}
|
||||
|
||||
# --- 新增:总结报告函数 ---
|
||||
print_summary() {
|
||||
echo "" # 确保从新的一行开始
|
||||
echo "========================================"
|
||||
if [ "$INTERRUPTED" = true ]; then
|
||||
echo -e "\e[33m测试被中断。正在汇总已完成的结果...\e[0m"
|
||||
else
|
||||
echo "测试完成"
|
||||
fi
|
||||
|
||||
local failed_count
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
# `wc -l` 计算由换行符分隔的列表项数
|
||||
failed_count=$(echo -e -n "${FAILED_CASES_LIST}" | wc -l)
|
||||
else
|
||||
failed_count=0
|
||||
fi
|
||||
local executed_count=$((PASSED_CASES + failed_count))
|
||||
|
||||
echo "测试结果: [通过: ${PASSED_CASES}, 失败: ${failed_count}, 已执行: ${executed_count}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
# 使用 printf 保证原样输出
|
||||
printf "%b" "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "========================================"
|
||||
|
||||
if [ "$failed_count" -gt 0 ]; then
|
||||
exit 1
|
||||
else
|
||||
exit 0
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 新增:SIGINT 信号处理函数 ---
|
||||
handle_sigint() {
|
||||
INTERRUPTED=true
|
||||
print_summary
|
||||
}
|
||||
|
||||
# =================================================================
|
||||
# --- 主逻辑开始 ---
|
||||
# =================================================================
|
||||
|
||||
# --- 新增:设置 trap 来捕获 SIGINT ---
|
||||
trap handle_sigint SIGINT
|
||||
|
||||
# 如果临时目录不存在,则创建它
|
||||
mkdir -p "${TMP_DIR}"
|
||||
|
||||
# 解析命令行参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-e|--executable) EXECUTE_MODE=true; shift ;;
|
||||
-eir) IR_EXECUTE_MODE=true; shift ;;
|
||||
-c|--clean) clean_tmp; exit 0 ;;
|
||||
-O1) OPTIMIZE_FLAG="-O1"; shift ;;
|
||||
-set)
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
shift
|
||||
while [[ "$#" -gt 0 && ! "$1" =~ ^- ]]; do TEST_SETS+=("$1"); shift; done
|
||||
;;
|
||||
-sct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-lct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then LLC_TIMEOUT="$2"; shift 2; else echo "错误: -lct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-gct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-et) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-h|--help) show_help; exit 0 ;;
|
||||
*) echo "未知选项: $1"; show_help; exit 1 ;;
|
||||
-c|--clean)
|
||||
clean_tmp
|
||||
exit 0
|
||||
;;
|
||||
-set)
|
||||
shift # 移过 '-set'
|
||||
# 消耗所有后续参数直到遇到下一个选项
|
||||
while [[ "$#" -gt 0 && ! "$1" =~ ^- ]]; do
|
||||
TEST_SETS+=("$1")
|
||||
shift
|
||||
done
|
||||
;;
|
||||
-sct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-gct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-et)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
*)
|
||||
echo "未知选项: $1"
|
||||
show_help
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
if ${EXECUTE_MODE} && ${IR_EXECUTE_MODE}; then
|
||||
echo -e "\e[31m错误: -e 和 -eir 选项不能同时使用。\e[0m" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# --- 本次修改点: 根据 -set 参数构建查找路径 ---
|
||||
declare -A SET_MAP
|
||||
SET_MAP[f]="functional"
|
||||
SET_MAP[h]="h_functional"
|
||||
SET_MAP[p]="performance"
|
||||
|
||||
SEARCH_PATHS=()
|
||||
|
||||
# 如果未指定测试集,或指定了 'all',则搜索所有目录
|
||||
if [ ${#TEST_SETS[@]} -eq 0 ] || [[ " ${TEST_SETS[@]} " =~ " all " ]]; then
|
||||
SEARCH_PATHS+=("${TESTDATA_DIR}")
|
||||
else
|
||||
@@ -179,34 +138,23 @@ else
|
||||
done
|
||||
fi
|
||||
|
||||
# 如果没有有效的搜索路径,则退出
|
||||
if [ ${#SEARCH_PATHS[@]} -eq 0 ]; then
|
||||
echo -e "\e[31m错误: 没有找到有效的测试集目录,测试中止。\e[0m"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "SysY 测试运行器启动..."
|
||||
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
|
||||
echo "输入目录: ${SEARCH_PATHS[@]}"
|
||||
echo "临时目录: ${TMP_DIR}"
|
||||
|
||||
RUN_MODE_INFO=""
|
||||
if ${IR_EXECUTE_MODE}; then
|
||||
RUN_MODE_INFO="IR执行模式 (-eir)"
|
||||
TIMEOUT_INFO="超时设置: sysyc=${SYSYC_TIMEOUT}s, llc=${LLC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
elif ${EXECUTE_MODE}; then
|
||||
RUN_MODE_INFO="直接执行模式 (-e)"
|
||||
TIMEOUT_INFO="超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
else
|
||||
RUN_MODE_INFO="编译模式 (默认)"
|
||||
TIMEOUT_INFO="超时设置: sysyc=${SYSYC_TIMEOUT}s"
|
||||
fi
|
||||
echo "运行模式: ${RUN_MODE_INFO}"
|
||||
echo "${TIMEOUT_INFO}"
|
||||
if ${EXECUTE_MODE} || ${IR_EXECUTE_MODE}; then
|
||||
echo "执行模式: ${EXECUTE_MODE}"
|
||||
if ${EXECUTE_MODE}; then
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# 使用构建好的路径查找 .sy 文件并排序
|
||||
sy_files=$(find "${SEARCH_PATHS[@]}" -name "*.sy" | sort -V)
|
||||
if [ -z "$sy_files" ]; then
|
||||
echo "在指定目录中未找到任何 .sy 文件。"
|
||||
@@ -214,229 +162,139 @@ if [ -z "$sy_files" ]; then
|
||||
fi
|
||||
TOTAL_CASES=$(echo "$sy_files" | wc -w)
|
||||
|
||||
# --- 修复: 使用 here-string (<<<) 代替管道 (|) 来避免子 shell 问题 ---
|
||||
while IFS= read -r sy_file; do
|
||||
is_passed=0 # 0 表示失败, 1 表示通过
|
||||
is_passed=1 # 1 表示通过, 0 表示失败
|
||||
|
||||
relative_path_no_ext=$(realpath --relative-to="${TESTDATA_DIR}" "${sy_file%.*}")
|
||||
output_base_name=$(echo "${relative_path_no_ext}" | tr '/' '_')
|
||||
|
||||
assembly_file_S="${TMP_DIR}/${output_base_name}_sysyc_S.s"
|
||||
executable_file_S="${TMP_DIR}/${output_base_name}_sysyc_S"
|
||||
output_actual_file_S="${TMP_DIR}/${output_base_name}_sysyc_S.actual_out"
|
||||
|
||||
ir_file="${TMP_DIR}/${output_base_name}_sysyc_ir.ll"
|
||||
assembly_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir.s"
|
||||
executable_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir"
|
||||
output_actual_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir.actual_out"
|
||||
|
||||
assembly_file="${TMP_DIR}/${output_base_name}_sysyc_riscv64.s"
|
||||
executable_file="${TMP_DIR}/${output_base_name}_sysyc_riscv64"
|
||||
input_file="${sy_file%.*}.in"
|
||||
output_reference_file="${sy_file%.*}.out"
|
||||
output_actual_file="${TMP_DIR}/${output_base_name}_sysyc_riscv64.actual_out"
|
||||
|
||||
echo "正在处理: $(basename "$sy_file") (路径: ${relative_path_no_ext}.sy)"
|
||||
|
||||
# --- 模式 1: IR 执行模式 (-eir) ---
|
||||
if ${IR_EXECUTE_MODE}; then
|
||||
step_failed=0
|
||||
test_logic_passed=0
|
||||
# 步骤 1: 使用 sysyc 编译 .sy 到 .s
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} 超时\e[0m"
|
||||
is_passed=0
|
||||
elif [ $SYSYC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} 失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
echo " [1/4] 使用 sysyc 编译为 IR (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" -o "${ir_file}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -ne 0 ]; then
|
||||
[ $SYSYC_STATUS -eq 124 ] && echo -e "\e[31m错误: SysY (IR) 编译超时\e[0m" || echo -e "\e[31m错误: SysY (IR) 编译失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
# 只有当 EXECUTE_MODE 为 true 且上一步成功时才继续
|
||||
if ${EXECUTE_MODE} && [ "$is_passed" -eq 1 ]; then
|
||||
# 步骤 2: 使用 riscv64-linux-gnu-gcc 编译 .s 到可执行文件
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译 ${assembly_file} 超时\e[0m"
|
||||
is_passed=0
|
||||
elif [ $GCC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译 ${assembly_file} 失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [2/4] 使用 llc-19 编译为汇编 (超时 ${LLC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${LLC_TIMEOUT} "${LLC_CMD}" -march=riscv64 -mcpu=generic-rv64 -mattr=+m,+a,+f,+d,+c -filetype=asm "${ir_file}" -o "${assembly_file_from_ir}"
|
||||
LLC_STATUS=$?
|
||||
if [ $LLC_STATUS -ne 0 ]; then
|
||||
[ $LLC_STATUS -eq 124 ] && echo -e "\e[31m错误: llc-19 编译超时\e[0m" || echo -e "\e[31m错误: llc-19 编译失败,退出码: ${LLC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
elif ! ${EXECUTE_MODE}; then
|
||||
echo " 跳过执行模式。仅生成汇编文件。"
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
FAILED_CASES_LIST+="${relative_path_no_ext}.sy\n"
|
||||
fi
|
||||
echo ""
|
||||
continue
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [3/4] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_from_ir}" -o "${executable_file_from_ir}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -ne 0 ]; then
|
||||
[ $GCC_STATUS -eq 124 ] && echo -e "\e[31m错误: GCC 编译超时\e[0m" || echo -e "\e[31m错误: GCC 编译失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
# 步骤 3, 4, 5: 只有当编译都成功时才执行
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file}\""
|
||||
if [ -f "${input_file}" ]; then
|
||||
exec_cmd+=" < \"${input_file}\""
|
||||
fi
|
||||
exec_cmd+=" > \"${output_actual_file}\""
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [4/4] 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_from_ir}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_from_ir}\""
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${sy_file} 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_sysyc_riscv64.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
test_logic_passed=1
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_from_ir.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
[ "$test_logic_passed" -eq 1 ] && echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"; fi
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
test_logic_passed=1
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
[ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ] && is_passed=1
|
||||
|
||||
# --- 模式 2: 直接执行模式 (-e) ---
|
||||
elif ${EXECUTE_MODE}; then
|
||||
step_failed=0
|
||||
test_logic_passed=0
|
||||
|
||||
echo " [1/3] 使用 sysyc 编译为汇编 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file_S}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -ne 0 ]; then
|
||||
[ $SYSYC_STATUS -eq 124 ] && echo -e "\e[31m错误: SysY (汇编) 编译超时\e[0m" || echo -e "\e[31m错误: SysY (汇编) 编译失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [2/3] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_S}" -o "${executable_file_S}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -ne 0 ]; then
|
||||
[ $GCC_STATUS -eq 124 ] && echo -e "\e[31m错误: GCC 编译超时\e[0m" || echo -e "\e[31m错误: GCC 编译失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [3/3] 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_S}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_S}\""
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
test_logic_passed=1
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_sysyc_S.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
[ "$test_logic_passed" -eq 1 ] && echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
else
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"; fi
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"
|
||||
fi
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
test_logic_passed=1
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
fi
|
||||
fi
|
||||
[ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ] && is_passed=1
|
||||
|
||||
# --- 模式 3: 默认编译模式 ---
|
||||
else
|
||||
s_compile_ok=0
|
||||
ir_compile_ok=0
|
||||
|
||||
echo " [1/2] 使用 sysyc 编译为汇编 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file_S}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_S_STATUS=$?
|
||||
if [ $SYSYC_S_STATUS -eq 0 ]; then
|
||||
s_compile_ok=1
|
||||
echo -e " \e[32m-> ${assembly_file_S} [成功]\e[0m"
|
||||
else
|
||||
[ $SYSYC_S_STATUS -eq 124 ] && echo -e " \e[31m-> [编译超时]\e[0m" || echo -e " \e[31m-> [编译失败, 退出码: ${SYSYC_S_STATUS}]\e[0m"
|
||||
fi
|
||||
|
||||
echo " [2/2] 使用 sysyc 编译为 IR (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" -o "${ir_file}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_IR_STATUS=$?
|
||||
if [ $SYSYC_IR_STATUS -eq 0 ]; then
|
||||
ir_compile_ok=1
|
||||
echo -e " \e[32m-> ${ir_file} [成功]\e[0m"
|
||||
else
|
||||
[ $SYSYC_IR_STATUS -eq 124 ] && echo -e " \e[31m-> [编译超时]\e[0m" || echo -e " \e[31m-> [编译失败, 退出码: ${SYSYC_IR_STATUS}]\e[0m"
|
||||
fi
|
||||
|
||||
if [ "$s_compile_ok" -eq 1 ] && [ "$ir_compile_ok" -eq 1 ]; then
|
||||
is_passed=1
|
||||
fi
|
||||
fi
|
||||
|
||||
# --- 统计结果 ---
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
# 确保 FAILED_CASES_LIST 的每一项都以换行符结尾
|
||||
FAILED_CASES_LIST+="${relative_path_no_ext}.sy\n"
|
||||
fi
|
||||
echo ""
|
||||
done <<< "$sy_files"
|
||||
|
||||
# --- 修改:调用总结函数 ---
|
||||
print_summary
|
||||
echo "========================================"
|
||||
echo "测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "========================================"
|
||||
|
||||
if [ "$PASSED_CASES" -eq "$TOTAL_CASES" ]; then
|
||||
exit 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -8,11 +8,9 @@ add_library(riscv64_backend_lib STATIC
|
||||
Handler/CalleeSavedHandler.cpp
|
||||
Handler/LegalizeImmediates.cpp
|
||||
Handler/PrologueEpilogueInsertion.cpp
|
||||
Handler/EliminateFrameIndices.cpp
|
||||
Optimize/Peephole.cpp
|
||||
Optimize/PostRA_Scheduler.cpp
|
||||
Optimize/PreRA_Scheduler.cpp
|
||||
Optimize/DivStrengthReduction.cpp
|
||||
)
|
||||
|
||||
# 包含后端模块所需的头文件路径
|
||||
|
||||
@@ -8,6 +8,11 @@ namespace sysy {
|
||||
|
||||
char CalleeSavedHandler::ID = 0;
|
||||
|
||||
// 辅助函数,用于判断一个物理寄存器是否为浮点寄存器
|
||||
static bool is_fp_reg(PhysicalReg reg) {
|
||||
return reg >= PhysicalReg::F0 && reg <= PhysicalReg::F31;
|
||||
}
|
||||
|
||||
bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
@@ -15,37 +20,114 @@ bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
|
||||
void CalleeSavedHandler::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
const std::set<PhysicalReg>& used_callee_saved = frame_info.used_callee_saved_regs;
|
||||
|
||||
std::set<PhysicalReg> used_callee_saved;
|
||||
|
||||
// 1. 扫描所有指令,找出被使用的callee-saved寄存器
|
||||
// 这个Pass在RegAlloc之后运行,所以可以访问到物理寄存器
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
for (auto& op : instr->getOperands()) {
|
||||
|
||||
auto check_and_insert_reg = [&](RegOperand* reg_op) {
|
||||
if (reg_op && !reg_op->isVirtual()) {
|
||||
PhysicalReg preg = reg_op->getPReg();
|
||||
|
||||
// 检查整数 s1-s11
|
||||
if (preg >= PhysicalReg::S1 && preg <= PhysicalReg::S11) {
|
||||
used_callee_saved.insert(preg);
|
||||
}
|
||||
// 检查浮点 fs0-fs11 (f8,f9,f18-f27)
|
||||
else if ((preg >= PhysicalReg::F8 && preg <= PhysicalReg::F9) || (preg >= PhysicalReg::F18 && preg <= PhysicalReg::F27)) {
|
||||
used_callee_saved.insert(preg);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
check_and_insert_reg(static_cast<RegOperand*>(op.get()));
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
check_and_insert_reg(static_cast<MemOperand*>(op.get())->getBase());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (used_callee_saved.empty()) {
|
||||
frame_info.callee_saved_size = 0;
|
||||
frame_info.callee_saved_regs_to_store.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
// 1. 计算被调用者保存寄存器所需的总空间大小
|
||||
// s0 总是由 PEI Pass 单独处理,这里不计入大小,但要确保它在列表中
|
||||
int size = 0;
|
||||
std::set<PhysicalReg> regs_to_save = used_callee_saved;
|
||||
if (regs_to_save.count(PhysicalReg::S0)) {
|
||||
regs_to_save.erase(PhysicalReg::S0);
|
||||
// 2. 计算并更新 frame_info
|
||||
frame_info.callee_saved_size = used_callee_saved.size() * 8;
|
||||
|
||||
// 为了布局确定性和恢复顺序一致,对寄存器排序
|
||||
std::vector<PhysicalReg> sorted_regs(used_callee_saved.begin(), used_callee_saved.end());
|
||||
std::sort(sorted_regs.begin(), sorted_regs.end());
|
||||
|
||||
// 3. 在函数序言中插入保存指令
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
// 插入点在函数入口标签之后,或者就是最开始
|
||||
auto insert_pos = entry_instrs.begin();
|
||||
if (!entry_instrs.empty() && entry_instrs.front()->getOpcode() == RVOpcodes::LABEL) {
|
||||
insert_pos = std::next(insert_pos);
|
||||
}
|
||||
size = regs_to_save.size() * 8; // 每个寄存器占8字节 (64-bit)
|
||||
frame_info.callee_saved_size = size;
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> save_instrs;
|
||||
// [关键] 从局部变量区域之后开始分配空间
|
||||
int current_offset = - (16 + frame_info.locals_size);
|
||||
|
||||
// 2. 创建一个有序的、需要保存的寄存器列表,以便后续 Pass 确定地生成代码
|
||||
// s0 不应包含在此列表中,因为它由 PEI Pass 特殊处理
|
||||
std::vector<PhysicalReg> sorted_regs(regs_to_save.begin(), regs_to_save.end());
|
||||
std::sort(sorted_regs.begin(), sorted_regs.end(), [](PhysicalReg a, PhysicalReg b){
|
||||
return static_cast<int>(a) < static_cast<int>(b);
|
||||
});
|
||||
frame_info.callee_saved_regs_to_store = sorted_regs;
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
current_offset -= 8;
|
||||
RVOpcodes save_op = is_fp_reg(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
|
||||
|
||||
// 3. 更新栈帧总大小。
|
||||
// 这是初步计算,PEI Pass 会进行最终的对齐。
|
||||
frame_info.total_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size;
|
||||
auto save_instr = std::make_unique<MachineInstr>(save_op);
|
||||
save_instr->addOperand(std::make_unique<RegOperand>(reg));
|
||||
save_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针 s0
|
||||
std::make_unique<ImmOperand>(current_offset)
|
||||
));
|
||||
save_instrs.push_back(std::move(save_instr));
|
||||
}
|
||||
|
||||
if (!save_instrs.empty()) {
|
||||
entry_instrs.insert(insert_pos,
|
||||
std::make_move_iterator(save_instrs.begin()),
|
||||
std::make_move_iterator(save_instrs.end()));
|
||||
}
|
||||
|
||||
// 4. 在函数结尾(ret之前)插入恢复指令
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> restore_instrs;
|
||||
// [关键] 使用与保存时完全相同的逻辑来计算偏移量
|
||||
current_offset = - (16 + frame_info.locals_size);
|
||||
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
current_offset -= 8;
|
||||
RVOpcodes restore_op = is_fp_reg(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
|
||||
|
||||
auto restore_instr = std::make_unique<MachineInstr>(restore_op);
|
||||
restore_instr->addOperand(std::make_unique<RegOperand>(reg));
|
||||
restore_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(current_offset)
|
||||
));
|
||||
restore_instrs.push_back(std::move(restore_instr));
|
||||
}
|
||||
|
||||
if (!restore_instrs.empty()) {
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(restore_instrs.begin()),
|
||||
std::make_move_iterator(restore_instrs.end()));
|
||||
}
|
||||
goto next_block_label;
|
||||
}
|
||||
}
|
||||
next_block_label:;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
} // namespace sysy
|
||||
@@ -1,235 +0,0 @@
|
||||
#include "EliminateFrameIndices.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// getTypeSizeInBytes 是一个通用辅助函数,保持不变
|
||||
unsigned EliminateFrameIndicesPass::getTypeSizeInBytes(Type* type) {
|
||||
if (!type) {
|
||||
assert(false && "Cannot get size of a null type.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (type->getKind()) {
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
case Type::kArray: {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
|
||||
}
|
||||
default:
|
||||
assert(false && "Unsupported type for size calculation.");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void EliminateFrameIndicesPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
Function* F = mfunc->getFunc();
|
||||
RISCv64ISel* isel = mfunc->getISel();
|
||||
|
||||
// 在这里处理栈传递的参数,以便在寄存器分配前就将数据流显式化,修复溢出逻辑的BUG。
|
||||
|
||||
// 2. 只为局部变量(AllocaInst)分配栈空间和计算偏移量
|
||||
// 局部变量从 s0 下方(负偏移量)开始分配,紧接着为 ra 和 s0 预留的16字节之后
|
||||
int local_var_offset = 16;
|
||||
|
||||
if(F) { // 确保函数指针有效
|
||||
for (auto& bb : F->getBasicBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(inst.get())) {
|
||||
Type* allocated_type = alloca->getType()->as<PointerType>()->getBaseType();
|
||||
int size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
// 优化栈帧大小:对于大数组使用4字节对齐,小对象使用8字节对齐
|
||||
if (size >= 256) { // 大数组优化
|
||||
size = (size + 3) & ~3; // 4字节对齐
|
||||
} else {
|
||||
size = (size + 7) & ~7; // 8字节对齐
|
||||
}
|
||||
if (size == 0) size = 4; // 最小4字节
|
||||
|
||||
local_var_offset += size;
|
||||
unsigned alloca_vreg = isel->getVReg(alloca);
|
||||
// 局部变量使用相对于s0的负向偏移
|
||||
frame_info.alloca_offsets[alloca_vreg] = -local_var_offset;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 记录仅由AllocaInst分配的局部变量的总大小
|
||||
frame_info.locals_size = local_var_offset - 16;
|
||||
// 记录局部变量区域分配结束的最终偏移量
|
||||
frame_info.locals_end_offset = -local_var_offset;
|
||||
|
||||
// 在函数入口为所有栈传递的参数插入load指令
|
||||
// 这个步骤至关重要:它在寄存器分配之前,为这些参数的vreg创建了明确的“定义(def)”指令。
|
||||
// 这解决了在高寄存器压力下,当这些vreg被溢出时,`rewriteProgram`找不到其定义点而崩溃的问题。
|
||||
if (F && isel && !mfunc->getBlocks().empty()) {
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
std::vector<std::unique_ptr<MachineInstr>> arg_load_instrs;
|
||||
|
||||
// 步骤 3.1: 生成所有加载栈参数的指令,暂存起来
|
||||
int arg_idx = 0;
|
||||
for (Argument* arg : F->getArguments()) {
|
||||
// 根据ABI,前8个整型/指针参数通过寄存器传递,这里只处理超出部分。
|
||||
if (arg_idx >= 8) {
|
||||
// 计算参数在调用者栈帧中的位置,该位置相对于被调用者的帧指针s0是正向偏移。
|
||||
// 第9个参数(arg_idx=8)位于 0(s0),第10个(arg_idx=9)位于 8(s0),以此类推。
|
||||
int offset = (arg_idx - 8) * 8;
|
||||
unsigned arg_vreg = isel->getVReg(arg);
|
||||
Type* arg_type = arg->getType();
|
||||
|
||||
// 根据参数类型选择正确的加载指令
|
||||
RVOpcodes load_op;
|
||||
if (arg_type->isFloat()) {
|
||||
load_op = RVOpcodes::FLW; // 单精度浮点
|
||||
} else if (arg_type->isPointer()) {
|
||||
load_op = RVOpcodes::LD; // 64位指针
|
||||
} else {
|
||||
load_op = RVOpcodes::LW; // 32位整数
|
||||
}
|
||||
|
||||
// 创建加载指令: lw/ld/flw vreg, offset(s0)
|
||||
auto load_instr = std::make_unique<MachineInstr>(load_op);
|
||||
load_instr->addOperand(std::make_unique<RegOperand>(arg_vreg));
|
||||
load_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
arg_load_instrs.push_back(std::move(load_instr));
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
|
||||
//仅当有需要加载的栈参数时,才执行插入逻辑
|
||||
if (!arg_load_instrs.empty()) {
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
auto insertion_point = entry_instrs.begin(); // 默认插入点为块的开头
|
||||
auto last_arg_save_it = entry_instrs.end();
|
||||
|
||||
// 步骤 3.2: 寻找一个安全的插入点。
|
||||
// 遍历入口块的指令,找到最后一条保存“寄存器传递参数”的伪指令。
|
||||
// 这样可以确保我们在所有 a0-a7 参数被保存之后,才执行可能覆盖它们的加载指令。
|
||||
for (auto it = entry_instrs.begin(); it != entry_instrs.end(); ++it) {
|
||||
MachineInstr* instr = it->get();
|
||||
// 寻找代表保存参数到栈的伪指令
|
||||
if (instr->getOpcode() == RVOpcodes::FRAME_STORE_W ||
|
||||
instr->getOpcode() == RVOpcodes::FRAME_STORE_D ||
|
||||
instr->getOpcode() == RVOpcodes::FRAME_STORE_F) {
|
||||
|
||||
// 检查被保存的值是否是寄存器参数 (arg_no < 8)
|
||||
auto& operands = instr->getOperands();
|
||||
if (operands.empty() || operands[0]->getKind() != MachineOperand::KIND_REG) continue;
|
||||
|
||||
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
Value* ir_value = isel->getVRegValueMap().count(src_vreg) ? isel->getVRegValueMap().at(src_vreg) : nullptr;
|
||||
|
||||
if (auto ir_arg = dynamic_cast<Argument*>(ir_value)) {
|
||||
if (ir_arg->getIndex() < 8) {
|
||||
last_arg_save_it = it; // 找到了一个保存寄存器参数的指令,更新位置
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 如果找到了这样的保存指令,我们的插入点就在它之后
|
||||
if (last_arg_save_it != entry_instrs.end()) {
|
||||
insertion_point = std::next(last_arg_save_it);
|
||||
}
|
||||
|
||||
// 步骤 3.3: 在计算出的安全位置,一次性插入所有新创建的参数加载指令
|
||||
entry_instrs.insert(insertion_point,
|
||||
std::make_move_iterator(arg_load_instrs.begin()),
|
||||
std::make_move_iterator(arg_load_instrs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 遍历所有机器指令,将访问局部变量的伪指令展开为真实指令
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
RVOpcodes opcode = instr_ptr->getOpcode();
|
||||
|
||||
if (opcode == RVOpcodes::FRAME_LOAD_W || opcode == RVOpcodes::FRAME_LOAD_D || opcode == RVOpcodes::FRAME_LOAD_F) {
|
||||
RVOpcodes real_load_op;
|
||||
if (opcode == RVOpcodes::FRAME_LOAD_W) real_load_op = RVOpcodes::LW;
|
||||
else if (opcode == RVOpcodes::FRAME_LOAD_D) real_load_op = RVOpcodes::LD;
|
||||
else real_load_op = RVOpcodes::FLW;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: lw/ld/flw dest_vreg, 0(addr_vreg)
|
||||
auto load_instr = std::make_unique<MachineInstr>(real_load_op);
|
||||
load_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
load_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(load_instr));
|
||||
|
||||
} else if (opcode == RVOpcodes::FRAME_STORE_W || opcode == RVOpcodes::FRAME_STORE_D || opcode == RVOpcodes::FRAME_STORE_F) {
|
||||
RVOpcodes real_store_op;
|
||||
if (opcode == RVOpcodes::FRAME_STORE_W) real_store_op = RVOpcodes::SW;
|
||||
else if (opcode == RVOpcodes::FRAME_STORE_D) real_store_op = RVOpcodes::SD;
|
||||
else real_store_op = RVOpcodes::FSW;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: sw/sd/fsw src_vreg, 0(addr_vreg)
|
||||
auto store_instr = std::make_unique<MachineInstr>(real_store_op);
|
||||
store_instr->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
store_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(store_instr));
|
||||
|
||||
} else if (instr_ptr->getOpcode() == RVOpcodes::FRAME_ADDR) {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
|
||||
// 将 `frame_addr rd, rs` 展开为 `addi rd, s0, offset`
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
} else {
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
}
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,22 +1,17 @@
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
#include "RISCv64LLIR.h" // 假设包含了 PhysicalReg, RVOpcodes 等定义
|
||||
#include "RISCv64ISel.h"
|
||||
#include "RISCv64RegAlloc.h" // 需要访问RegAlloc的结果
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PrologueEpilogueInsertionPass::ID = 0;
|
||||
|
||||
void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
Function* F = mfunc->getFunc();
|
||||
RISCv64ISel* isel = mfunc->getISel();
|
||||
|
||||
// 1. 清理 KEEPALIVE 伪指令
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
auto& instrs = mbb->getInstructions();
|
||||
|
||||
// 使用标准的 Erase-Remove Idiom 来删除满足条件的元素
|
||||
instrs.erase(
|
||||
std::remove_if(instrs.begin(), instrs.end(),
|
||||
[](const std::unique_ptr<MachineInstr>& instr) {
|
||||
@@ -27,59 +22,39 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
|
||||
);
|
||||
}
|
||||
|
||||
// 2. 确定需要保存的被调用者保存寄存器 (callee-saved)
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
Function* F = mfunc->getFunc();
|
||||
RISCv64ISel* isel = mfunc->getISel();
|
||||
|
||||
// [关键] 获取寄存器分配的结果 (vreg -> preg 的映射)
|
||||
// RegAlloc Pass 必须已经运行过
|
||||
auto& vreg_to_preg_map = frame_info.vreg_to_preg_map;
|
||||
std::set<PhysicalReg> used_callee_saved_regs_set;
|
||||
const auto& callee_saved_int = getCalleeSavedIntRegs();
|
||||
const auto& callee_saved_fp = getCalleeSavedFpRegs();
|
||||
|
||||
for (const auto& pair : vreg_to_preg_map) {
|
||||
PhysicalReg preg = pair.second;
|
||||
bool is_int_cs = std::find(callee_saved_int.begin(), callee_saved_int.end(), preg) != callee_saved_int.end();
|
||||
bool is_fp_cs = std::find(callee_saved_fp.begin(), callee_saved_fp.end(), preg) != callee_saved_fp.end();
|
||||
if ((is_int_cs && preg != PhysicalReg::S0) || is_fp_cs) {
|
||||
used_callee_saved_regs_set.insert(preg);
|
||||
}
|
||||
}
|
||||
frame_info.callee_saved_regs_to_store.assign(
|
||||
used_callee_saved_regs_set.begin(), used_callee_saved_regs_set.end()
|
||||
);
|
||||
std::sort(frame_info.callee_saved_regs_to_store.begin(), frame_info.callee_saved_regs_to_store.end());
|
||||
frame_info.callee_saved_size = frame_info.callee_saved_regs_to_store.size() * 8;
|
||||
|
||||
// 3. 计算最终的栈帧总大小,包含栈溢出保护
|
||||
// 完全遵循 AsmPrinter 中的计算逻辑
|
||||
int total_stack_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size +
|
||||
16;
|
||||
16; // 为 ra 和 s0 固定的16字节
|
||||
|
||||
// 栈溢出保护:增加最大栈帧大小以容纳大型数组
|
||||
const int MAX_STACK_FRAME_SIZE = 8192; // 8KB to handle large arrays like 256*4*2 = 2048 bytes
|
||||
if (total_stack_size > MAX_STACK_FRAME_SIZE) {
|
||||
// 如果仍然超过限制,尝试优化对齐方式
|
||||
std::cerr << "Warning: Stack frame size " << total_stack_size
|
||||
<< " exceeds recommended limit " << MAX_STACK_FRAME_SIZE << " for function "
|
||||
<< mfunc->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 优化:减少对齐开销,使用16字节对齐而非更大的对齐
|
||||
int aligned_stack_size = (total_stack_size + 15) & ~15;
|
||||
frame_info.total_size = aligned_stack_size;
|
||||
|
||||
// 只有在需要分配栈空间时才生成指令
|
||||
if (aligned_stack_size > 0) {
|
||||
// --- 4. 插入完整的序言 ---
|
||||
// --- 1. 插入序言 ---
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> prologue_instrs;
|
||||
|
||||
// 4.1. 分配栈帧
|
||||
// 1. addi sp, sp, -aligned_stack_size
|
||||
auto alloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<ImmOperand>(-aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(alloc_stack));
|
||||
|
||||
// 4.2. 保存 ra 和 s0
|
||||
// 2. sd ra, (aligned_stack_size - 8)(sp)
|
||||
auto save_ra = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
save_ra->addOperand(std::make_unique<MemOperand>(
|
||||
@@ -87,6 +62,8 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_ra));
|
||||
|
||||
// 3. sd s0, (aligned_stack_size - 16)(sp)
|
||||
auto save_fp = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
save_fp->addOperand(std::make_unique<MemOperand>(
|
||||
@@ -95,55 +72,66 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_fp));
|
||||
|
||||
// 4.3. 设置新的帧指针 s0
|
||||
// 4. addi s0, sp, aligned_stack_size
|
||||
auto set_fp = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
set_fp->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(set_fp));
|
||||
|
||||
// --- 在s0设置完毕后,使用物理寄存器加载栈参数 ---
|
||||
if (F && isel) {
|
||||
int arg_idx = 0;
|
||||
for (Argument* arg : F->getArguments()) {
|
||||
if (arg_idx >= 8) {
|
||||
unsigned vreg = isel->getVReg(arg);
|
||||
|
||||
if (frame_info.alloca_offsets.count(vreg) && vreg_to_preg_map.count(vreg)) {
|
||||
int offset = frame_info.alloca_offsets.at(vreg);
|
||||
PhysicalReg dest_preg = vreg_to_preg_map.at(vreg);
|
||||
Type* arg_type = arg->getType();
|
||||
|
||||
if (arg_type->isFloat()) {
|
||||
auto load_arg = std::make_unique<MachineInstr>(RVOpcodes::FLW);
|
||||
load_arg->addOperand(std::make_unique<RegOperand>(dest_preg));
|
||||
load_arg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(load_arg));
|
||||
} else {
|
||||
RVOpcodes load_op = arg_type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW;
|
||||
auto load_arg = std::make_unique<MachineInstr>(load_op);
|
||||
load_arg->addOperand(std::make_unique<RegOperand>(dest_preg));
|
||||
load_arg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(load_arg));
|
||||
}
|
||||
}
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
}
|
||||
|
||||
// 4.4. 保存所有使用到的被调用者保存寄存器
|
||||
int next_available_offset = -(16 + frame_info.locals_size + frame_info.spill_size);
|
||||
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
|
||||
// 改为“先更新,后使用”逻辑
|
||||
next_available_offset -= 8; // 先为当前寄存器分配下一个可用槽位
|
||||
RVOpcodes store_op = isFPR(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
|
||||
auto save_cs_reg = std::make_unique<MachineInstr>(store_op);
|
||||
save_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
|
||||
save_cs_reg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(next_available_offset) // 使用新计算出的正确偏移
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_cs_reg));
|
||||
// 不再需要在循环末尾递减
|
||||
// 确定插入点
|
||||
auto insert_pos = entry_instrs.begin();
|
||||
|
||||
// 一次性将所有序言指令插入
|
||||
if (!prologue_instrs.empty()) {
|
||||
entry_instrs.insert(insert_pos,
|
||||
std::make_move_iterator(prologue_instrs.begin()),
|
||||
std::make_move_iterator(prologue_instrs.end()));
|
||||
}
|
||||
|
||||
// 4.5. 将所有生成的序言指令一次性插入到函数入口
|
||||
entry_instrs.insert(entry_instrs.begin(),
|
||||
std::make_move_iterator(prologue_instrs.begin()),
|
||||
std::make_move_iterator(prologue_instrs.end()));
|
||||
|
||||
// --- 5. 插入完整的尾声 ---
|
||||
// --- 2. 插入尾声 (此部分逻辑保持不变) ---
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> epilogue_instrs;
|
||||
|
||||
// 5.1. 恢复被调用者保存寄存器
|
||||
int next_available_offset_restore = -(16 + frame_info.locals_size + frame_info.spill_size);
|
||||
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
|
||||
next_available_offset_restore -= 8; // 为下一个寄存器准备偏移
|
||||
RVOpcodes load_op = isFPR(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
|
||||
auto restore_cs_reg = std::make_unique<MachineInstr>(load_op);
|
||||
restore_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
|
||||
restore_cs_reg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(next_available_offset_restore) // 使用当前偏移
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_cs_reg));
|
||||
}
|
||||
|
||||
// 5.2. 恢复 ra 和 s0
|
||||
// 1. ld ra
|
||||
auto restore_ra = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
restore_ra->addOperand(std::make_unique<MemOperand>(
|
||||
@@ -151,6 +139,8 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_ra));
|
||||
|
||||
// 2. ld s0
|
||||
auto restore_fp = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
restore_fp->addOperand(std::make_unique<MemOperand>(
|
||||
@@ -159,18 +149,18 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_fp));
|
||||
|
||||
// 5.3. 释放栈帧
|
||||
// 3. addi sp, sp, aligned_stack_size
|
||||
auto dealloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
epilogue_instrs.push_back(std::move(dealloc_stack));
|
||||
|
||||
// 将尾声指令插入到 RET 指令之前
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(epilogue_instrs.begin()),
|
||||
std::make_move_iterator(epilogue_instrs.end()));
|
||||
|
||||
if (!epilogue_instrs.empty()) {
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(epilogue_instrs.begin()),
|
||||
std::make_move_iterator(epilogue_instrs.end()));
|
||||
}
|
||||
goto next_block;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,282 +0,0 @@
|
||||
#include "DivStrengthReduction.h"
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char DivStrengthReduction::ID = 0;
|
||||
|
||||
bool DivStrengthReduction::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void DivStrengthReduction::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
if (!mfunc)
|
||||
return;
|
||||
|
||||
bool debug = false; // Set to true for debugging
|
||||
if (debug)
|
||||
std::cout << "Running DivStrengthReduction optimization..." << std::endl;
|
||||
|
||||
int next_temp_reg = 1000;
|
||||
auto createTempReg = [&]() -> int {
|
||||
return next_temp_reg++;
|
||||
};
|
||||
|
||||
struct MagicInfo {
|
||||
int64_t magic;
|
||||
int shift;
|
||||
};
|
||||
|
||||
auto computeMagic = [](int64_t d, bool is_32bit) -> MagicInfo {
|
||||
int word_size = is_32bit ? 32 : 64;
|
||||
uint64_t ad = std::abs(d);
|
||||
|
||||
if (ad == 0) return {0, 0};
|
||||
|
||||
int l = std::floor(std::log2(ad));
|
||||
if ((ad & (ad - 1)) == 0) { // power of 2
|
||||
l = 0; // special case for power of 2, shift will be calculated differently
|
||||
}
|
||||
|
||||
__int128_t one = 1;
|
||||
__int128_t num;
|
||||
int total_shift;
|
||||
|
||||
if (is_32bit) {
|
||||
total_shift = 31 + l;
|
||||
num = one << total_shift;
|
||||
} else {
|
||||
total_shift = 63 + l;
|
||||
num = one << total_shift;
|
||||
}
|
||||
|
||||
__int128_t den = ad;
|
||||
int64_t magic = (num / den) + 1;
|
||||
|
||||
return {magic, total_shift};
|
||||
};
|
||||
|
||||
auto isPowerOfTwo = [](int64_t n) -> bool {
|
||||
return n > 0 && (n & (n - 1)) == 0;
|
||||
};
|
||||
|
||||
auto getPowerOfTwoExponent = [](int64_t n) -> int {
|
||||
if (n <= 0 || (n & (n - 1)) != 0) return -1;
|
||||
int shift = 0;
|
||||
while (n > 1) {
|
||||
n >>= 1;
|
||||
shift++;
|
||||
}
|
||||
return shift;
|
||||
};
|
||||
|
||||
struct InstructionReplacement {
|
||||
size_t index;
|
||||
size_t count_to_erase;
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
};
|
||||
|
||||
for (auto &mbb_uptr : mfunc->getBlocks()) {
|
||||
auto &mbb = *mbb_uptr;
|
||||
auto &instrs = mbb.getInstructions();
|
||||
std::vector<InstructionReplacement> replacements;
|
||||
|
||||
for (size_t i = 0; i < instrs.size(); ++i) {
|
||||
auto *instr = instrs[i].get();
|
||||
|
||||
bool is_32bit = (instr->getOpcode() == RVOpcodes::DIVW);
|
||||
|
||||
if (instr->getOpcode() != RVOpcodes::DIV && !is_32bit) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (instr->getOperands().size() != 3) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_op = instr->getOperands()[0].get();
|
||||
auto *src1_op = instr->getOperands()[1].get();
|
||||
auto *src2_op = instr->getOperands()[2].get();
|
||||
|
||||
int64_t divisor = 0;
|
||||
bool const_divisor_found = false;
|
||||
size_t instructions_to_replace = 1;
|
||||
|
||||
if (src2_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
divisor = static_cast<ImmOperand *>(src2_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
} else if (src2_op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (i > 0) {
|
||||
auto *prev_instr = instrs[i - 1].get();
|
||||
if (prev_instr->getOpcode() == RVOpcodes::LI && prev_instr->getOperands().size() == 2) {
|
||||
auto *li_dst_op = prev_instr->getOperands()[0].get();
|
||||
auto *li_imm_op = prev_instr->getOperands()[1].get();
|
||||
if (li_dst_op->getKind() == MachineOperand::KIND_REG && li_imm_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
auto *div_reg_op = static_cast<RegOperand *>(src2_op);
|
||||
auto *li_dst_reg_op = static_cast<RegOperand *>(li_dst_op);
|
||||
if (div_reg_op->isVirtual() && li_dst_reg_op->isVirtual() &&
|
||||
div_reg_op->getVRegNum() == li_dst_reg_op->getVRegNum()) {
|
||||
divisor = static_cast<ImmOperand *>(li_imm_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
instructions_to_replace = 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!const_divisor_found) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_reg = static_cast<RegOperand *>(dst_op);
|
||||
auto *src1_reg = static_cast<RegOperand *>(src1_op);
|
||||
|
||||
if (divisor == 0) continue;
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
|
||||
if (divisor == 1) {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
else if (divisor == -1) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
}
|
||||
else if (isPowerOfTwo(std::abs(divisor))) {
|
||||
int shift = getPowerOfTwoExponent(std::abs(divisor));
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto srlInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRLIW : RVOpcodes::SRLI);
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<ImmOperand>((is_32bit ? 32 : 64) - shift));
|
||||
newInstrs.push_back(std::move(srlInstr));
|
||||
|
||||
auto addInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(addInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
else {
|
||||
auto magic_info = computeMagic(divisor, is_32bit);
|
||||
int magic_reg = createTempReg();
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto loadInstr = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
loadInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
loadInstr->addOperand(std::make_unique<ImmOperand>(magic_info.magic));
|
||||
newInstrs.push_back(std::move(loadInstr));
|
||||
|
||||
if (is_32bit) {
|
||||
auto mulInstr = std::make_unique<MachineInstr>(RVOpcodes::MUL);
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(magic_info.shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
} else {
|
||||
auto mulhInstr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulhInstr));
|
||||
|
||||
int post_shift = magic_info.shift - 63;
|
||||
if (post_shift > 0) {
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(post_shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
}
|
||||
}
|
||||
|
||||
int sign_reg = createTempReg();
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto subInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
newInstrs.push_back(std::move(subInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
|
||||
if (!newInstrs.empty()) {
|
||||
size_t start_index = i;
|
||||
if (instructions_to_replace == 2) {
|
||||
start_index = i - 1;
|
||||
}
|
||||
replacements.push_back({start_index, instructions_to_replace, std::move(newInstrs)});
|
||||
}
|
||||
}
|
||||
|
||||
for (auto it = replacements.rbegin(); it != replacements.rend(); ++it) {
|
||||
instrs.erase(instrs.begin() + it->index, instrs.begin() + it->index + it->count_to_erase);
|
||||
instrs.insert(instrs.begin() + it->index,
|
||||
std::make_move_iterator(it->newInstrs.begin()),
|
||||
std::make_move_iterator(it->newInstrs.end()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,8 +1,7 @@
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <stdexcept>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 检查是否为内存加载/存储指令,以处理特殊的打印格式
|
||||
@@ -61,7 +60,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::ADD: *OS << "add "; break; case RVOpcodes::ADDI: *OS << "addi "; break;
|
||||
case RVOpcodes::ADDW: *OS << "addw "; break; case RVOpcodes::ADDIW: *OS << "addiw "; break;
|
||||
case RVOpcodes::SUB: *OS << "sub "; break; case RVOpcodes::SUBW: *OS << "subw "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break; case RVOpcodes::MULH: *OS << "mulh "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break;
|
||||
case RVOpcodes::DIV: *OS << "div "; break; case RVOpcodes::DIVW: *OS << "divw "; break;
|
||||
case RVOpcodes::REM: *OS << "rem "; break; case RVOpcodes::REMW: *OS << "remw "; break;
|
||||
case RVOpcodes::XOR: *OS << "xor "; break; case RVOpcodes::XORI: *OS << "xori "; break;
|
||||
@@ -105,7 +104,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::FMV_S: *OS << "fmv.s "; break;
|
||||
case RVOpcodes::FMV_W_X: *OS << "fmv.w.x "; break;
|
||||
case RVOpcodes::FMV_X_W: *OS << "fmv.x.w "; break;
|
||||
case RVOpcodes::CALL: { // 为CALL指令添加特殊处理逻辑
|
||||
case RVOpcodes::CALL: { // [核心修改] 为CALL指令添加特殊处理逻辑
|
||||
*OS << "call ";
|
||||
// 遍历所有操作数,只寻找并打印函数名标签
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
@@ -237,30 +236,4 @@ std::string RISCv64AsmPrinter::regToString(PhysicalReg reg) {
|
||||
}
|
||||
}
|
||||
|
||||
std::string RISCv64AsmPrinter::formatInstr(const MachineInstr* instr) {
|
||||
if (!instr) return "(null instr)";
|
||||
|
||||
// 使用 stringstream 作为临时的输出目标
|
||||
std::stringstream ss;
|
||||
|
||||
// 关键: 临时将类成员 'OS' 指向我们的 stringstream
|
||||
std::ostream* old_os = this->OS;
|
||||
this->OS = &ss;
|
||||
|
||||
// 修正: 调用正确的内部打印函数 printMachineInstr
|
||||
printInstruction(const_cast<MachineInstr*>(instr), false);
|
||||
|
||||
// 恢复旧的 ostream 指针
|
||||
this->OS = old_os;
|
||||
|
||||
// 获取stringstream的内容并做一些清理
|
||||
std::string result = ss.str();
|
||||
size_t endpos = result.find_last_not_of(" \t\n\r");
|
||||
if (std::string::npos != endpos) {
|
||||
result = result.substr(0, endpos + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -12,39 +12,6 @@ std::string RISCv64CodeGen::code_gen() {
|
||||
return module_gen();
|
||||
}
|
||||
|
||||
unsigned RISCv64CodeGen::getTypeSizeInBytes(Type* type) {
|
||||
if (!type) {
|
||||
assert(false && "Cannot get size of a null type.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (type->getKind()) {
|
||||
// 对于SysY语言,基本类型int和float都占用4字节
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
|
||||
// 指针类型在RISC-V 64位架构下占用8字节
|
||||
// 虽然SysY没有'int*'语法,但数组变量在IR层面本身就是指针类型
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
|
||||
// 数组类型的总大小 = 元素数量 * 单个元素的大小
|
||||
case Type::kArray: {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
// 递归调用以计算元素大小
|
||||
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
|
||||
}
|
||||
|
||||
// 其他类型,如Void, Label等不占用栈空间,或者不应该出现在这里
|
||||
default:
|
||||
// 如果遇到未处理的类型,触发断言,方便调试
|
||||
// assert(false && "Unsupported type for size calculation.");
|
||||
return 0; // 对于像Label或Void这样的类型,返回0是合理的
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void printInitializer(std::stringstream& ss, const ValueCounter& init_values) {
|
||||
for (size_t i = 0; i < init_values.getValues().size(); ++i) {
|
||||
auto val = init_values.getValues()[i];
|
||||
@@ -72,36 +39,18 @@ std::string RISCv64CodeGen::module_gen() {
|
||||
|
||||
for (const auto& global_ptr : module->getGlobals()) {
|
||||
GlobalValue* global = global_ptr.get();
|
||||
|
||||
// 使用更健壮的逻辑来判断是否为大型零初始化数组
|
||||
bool is_all_zeros = true;
|
||||
const auto& init_values = global->getInitValues();
|
||||
|
||||
// 检查初始化值是否全部为0
|
||||
if (init_values.getValues().empty()) {
|
||||
// 如果 ValueCounter 为空,GlobalValue 的构造函数会确保它是零初始化的
|
||||
is_all_zeros = true;
|
||||
} else {
|
||||
for (auto val : init_values.getValues()) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (!const_val->isZero()) {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// 如果初始值包含非常量(例如,另一个全局变量的地址),则不认为是纯零初始化
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
// 判断是否为大型零初始化数组,以便放入.bss段
|
||||
bool is_large_zero_array = false;
|
||||
if (init_values.getValues().size() == 1) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(init_values.getValues()[0])) {
|
||||
if (const_val->isInt() && const_val->getInt() == 0 && init_values.getNumbers()[0] > 16) {
|
||||
is_large_zero_array = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 使用 getTypeSizeInBytes 检查总大小是否超过阈值 (16个整数 = 64字节)
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
bool is_large_zero_array = is_all_zeros && (total_size > 64);
|
||||
|
||||
if (is_large_zero_array) {
|
||||
bss_globals.push_back(global);
|
||||
} else {
|
||||
@@ -109,12 +58,12 @@ std::string RISCv64CodeGen::module_gen() {
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤2:生成 .bss 段的代码 ---
|
||||
// --- 步骤2:生成 .bss 段的代码 (这部分不变) ---
|
||||
if (!bss_globals.empty()) {
|
||||
ss << ".bss\n";
|
||||
for (GlobalValue* global : bss_globals) {
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
unsigned count = global->getInitValues().getNumbers()[0];
|
||||
unsigned total_size = count * 4; // 假设元素都是4字节
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
@@ -125,67 +74,33 @@ std::string RISCv64CodeGen::module_gen() {
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤3:生成 .data 段的代码 ---
|
||||
// --- [修改] 步骤3:生成 .data 段的代码 ---
|
||||
// 我们需要检查 data_globals 和 常量列表是否都为空
|
||||
if (!data_globals.empty() || !module->getConsts().empty()) {
|
||||
ss << ".data\n";
|
||||
|
||||
// a. 处理普通的全局变量 (GlobalValue)
|
||||
// a. 先处理普通的全局变量 (GlobalValue)
|
||||
for (GlobalValue* global : data_globals) {
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
ss << ".type " << global->getName() << ", @object\n";
|
||||
ss << ".size " << global->getName() << ", " << total_size << "\n";
|
||||
ss << global->getName() << ":\n";
|
||||
bool is_all_zeros = true;
|
||||
const auto& init_values = global->getInitValues();
|
||||
if (init_values.getValues().empty()) {
|
||||
is_all_zeros = true;
|
||||
} else {
|
||||
for (auto val : init_values.getValues()) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (!const_val->isZero()) {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (is_all_zeros) {
|
||||
ss << " .zero " << total_size << "\n";
|
||||
} else {
|
||||
// 对于有非零初始值的变量,保持原有的打印逻辑。
|
||||
printInitializer(ss, global->getInitValues());
|
||||
}
|
||||
printInitializer(ss, global->getInitValues());
|
||||
}
|
||||
|
||||
// b. 处理全局常量 (ConstantVariable)
|
||||
// b. [新增] 再处理全局常量 (ConstantVariable)
|
||||
for (const auto& const_ptr : module->getConsts()) {
|
||||
ConstantVariable* cnst = const_ptr.get();
|
||||
Type* allocated_type = cnst->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << cnst->getName() << "\n";
|
||||
ss << ".type " << cnst->getName() << ", @object\n";
|
||||
ss << ".size " << cnst->getName() << ", " << total_size << "\n";
|
||||
ss << cnst->getName() << ":\n";
|
||||
printInitializer(ss, cnst->getInitValues());
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤4:处理函数 (.text段) 的逻辑 ---
|
||||
// --- 处理函数 (.text段) 的逻辑保持不变 ---
|
||||
if (!module->getFunctions().empty()) {
|
||||
ss << ".text\n";
|
||||
for (const auto& func_pair : module->getFunctions()) {
|
||||
if (func_pair.second.get() && !func_pair.second->getBasicBlocks().empty()) {
|
||||
if (func_pair.second.get()) {
|
||||
ss << function_gen(func_pair.second.get());
|
||||
if (DEBUG) std::cerr << "Function: " << func_pair.first << " generated.\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -196,43 +111,15 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
// === 完整的后端处理流水线 ===
|
||||
|
||||
// 阶段 1: 指令选择 (sysy::IR -> LLIR with virtual registers)
|
||||
DEBUG = 0;
|
||||
DEEPDEBUG = 0;
|
||||
|
||||
RISCv64ISel isel;
|
||||
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
|
||||
|
||||
// 第一次调试打印输出
|
||||
std::stringstream ss_after_isel;
|
||||
RISCv64AsmPrinter printer_isel(mfunc.get());
|
||||
printer_isel.run(ss_after_isel, true);
|
||||
if (DEBUG) {
|
||||
std::cout << ss_after_isel.str();
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== Intermediate Representation after Instruction Selection ======\n"
|
||||
<< ss_after_isel.str();
|
||||
}
|
||||
|
||||
// 阶段 2: 消除帧索引 (展开伪指令,计算局部变量偏移)
|
||||
// 这个Pass必须在寄存器分配之前运行
|
||||
EliminateFrameIndicesPass efi_pass;
|
||||
efi_pass.runOnMachineFunction(mfunc.get());
|
||||
std::stringstream ss1;
|
||||
RISCv64AsmPrinter printer1(mfunc.get());
|
||||
printer1.run(ss1, true);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after eliminate frame indices ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
std::stringstream ss_after_eli;
|
||||
printer_isel.run(ss_after_eli, true);
|
||||
std::cerr << "====== LLIR after eliminate frame indices ======\n"
|
||||
<< ss_after_eli.str();
|
||||
}
|
||||
|
||||
// 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
|
||||
DivStrengthReduction div_strength_reduction;
|
||||
div_strength_reduction.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 2.1: 指令调度 (Instruction Scheduling)
|
||||
// 阶段 2: 指令调度 (Instruction Scheduling)
|
||||
PreRA_Scheduler scheduler;
|
||||
scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
@@ -240,20 +127,10 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
RISCv64RegAlloc reg_alloc(mfunc.get());
|
||||
reg_alloc.run();
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after reg alloc ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
}
|
||||
|
||||
// 阶段 3.1: 处理被调用者保存寄存器
|
||||
CalleeSavedHandler callee_handler;
|
||||
callee_handler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after callee handler ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
}
|
||||
|
||||
// 阶段 4: 窥孔优化 (Peephole Optimization)
|
||||
PeepholeOptimizer peephole;
|
||||
peephole.runOnMachineFunction(mfunc.get());
|
||||
@@ -266,7 +143,7 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
PrologueEpilogueInsertionPass pei_pass;
|
||||
pei_pass.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 3.3: 大立即数合法化
|
||||
// 阶段 3.3: 清理产生的大立即数
|
||||
LegalizeImmediatesPass legalizer;
|
||||
legalizer.runOnMachineFunction(mfunc.get());
|
||||
|
||||
@@ -274,9 +151,8 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
std::stringstream ss;
|
||||
RISCv64AsmPrinter printer(mfunc.get());
|
||||
printer.run(ss);
|
||||
|
||||
if (DEBUG) ss << "\n" << ss1.str(); // 将指令选择阶段的结果也包含在最终输出中
|
||||
return ss.str();
|
||||
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,10 +1,9 @@
|
||||
#include "RISCv64ISel.h"
|
||||
#include "IR.h" // For GlobalValue
|
||||
#include <stdexcept>
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <cmath> // For std::fabs
|
||||
#include <limits> // For std::numeric_limits
|
||||
#include <iostream>
|
||||
|
||||
namespace sysy {
|
||||
@@ -168,6 +167,33 @@ void RISCv64ISel::selectBasicBlock(BasicBlock* bb) {
|
||||
select_recursive(node_to_select);
|
||||
}
|
||||
}
|
||||
|
||||
if (CurMBB == MFunc->getBlocks().front().get()) { // 只对入口块操作
|
||||
auto keepalive = std::make_unique<MachineInstr>(RVOpcodes::PSEUDO_KEEPALIVE);
|
||||
for (Argument* arg : F->getArguments()) {
|
||||
keepalive->addOperand(std::make_unique<RegOperand>(getVReg(arg)));
|
||||
}
|
||||
|
||||
auto& instrs = CurMBB->getInstructions();
|
||||
auto insert_pos = instrs.end();
|
||||
|
||||
// 关键:检查基本块是否以一个“终止指令”结尾
|
||||
if (!instrs.empty()) {
|
||||
RVOpcodes last_op = instrs.back()->getOpcode();
|
||||
// 扩充了判断条件,涵盖所有可能的终止指令
|
||||
if (last_op == RVOpcodes::J || last_op == RVOpcodes::RET ||
|
||||
last_op == RVOpcodes::BEQ || last_op == RVOpcodes::BNE ||
|
||||
last_op == RVOpcodes::BLT || last_op == RVOpcodes::BGE ||
|
||||
last_op == RVOpcodes::BLTU || last_op == RVOpcodes::BGEU)
|
||||
{
|
||||
// 如果是,插入点就在这个终止指令之前
|
||||
insert_pos = std::prev(instrs.end());
|
||||
}
|
||||
}
|
||||
|
||||
// 在计算出的正确位置插入伪指令
|
||||
instrs.insert(insert_pos, std::move(keepalive));
|
||||
}
|
||||
}
|
||||
|
||||
// 核心函数:为DAG节点选择并生成MachineInstr (已修复和增强的完整版本)
|
||||
@@ -183,12 +209,8 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
case DAGNode::CONSTANT:
|
||||
case DAGNode::ALLOCA_ADDR:
|
||||
if (node->value) {
|
||||
// GlobalValue objects (global variables) should not get virtual registers
|
||||
// since they represent memory addresses, not register-allocated values
|
||||
if (dynamic_cast<GlobalValue*>(node->value) == nullptr) {
|
||||
// 确保它有一个关联的虚拟寄存器即可,不生成代码。
|
||||
getVReg(node->value);
|
||||
}
|
||||
// 确保它有一个关联的虚拟寄存器即可,不生成代码。
|
||||
getVReg(node->value);
|
||||
}
|
||||
break;
|
||||
|
||||
@@ -380,7 +402,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
Value* base = nullptr;
|
||||
Value* offset = nullptr;
|
||||
|
||||
// 扩展基地址的判断,使其可以识别 AllocaInst 或 GlobalValue
|
||||
// [修改] 扩展基地址的判断,使其可以识别 AllocaInst 或 GlobalValue
|
||||
if (dynamic_cast<AllocaInst*>(lhs) || dynamic_cast<GlobalValue*>(lhs)) {
|
||||
base = lhs;
|
||||
offset = rhs;
|
||||
@@ -399,7 +421,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
|
||||
// 2. 根据基地址的类型,生成不同的指令来获取基地址
|
||||
// 2. [修改] 根据基地址的类型,生成不同的指令来获取基地址
|
||||
auto base_addr_vreg = getNewVReg(Type::getIntType()); // 创建一个新的临时vreg来存放基地址
|
||||
|
||||
// 情况一:基地址是局部栈变量
|
||||
@@ -430,7 +452,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
}
|
||||
}
|
||||
|
||||
// 在BINARY节点内部按需加载常量操作数。
|
||||
// [V2优点] 在BINARY节点内部按需加载常量操作数。
|
||||
auto load_val_if_const = [&](Value* val) {
|
||||
if (auto c = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (DEBUG) {
|
||||
@@ -461,7 +483,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto dest_vreg = getVReg(bin);
|
||||
auto lhs_vreg = getVReg(lhs);
|
||||
|
||||
// 融合 ADDIW 优化。
|
||||
// [V2优点] 融合 ADDIW 优化。
|
||||
if (rhs_is_imm_opt) {
|
||||
auto rhs_const = dynamic_cast<ConstantValue*>(rhs);
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::ADDIW);
|
||||
@@ -517,15 +539,6 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case Instruction::kSRA: {
|
||||
auto rhs_const = dynamic_cast<ConstantInteger*>(rhs);
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SRAIW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<ImmOperand>(rhs_const->getInt()));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpEQ: { // 等于 (a == b) -> (subw; seqz)
|
||||
auto sub = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
|
||||
sub->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@@ -745,83 +758,11 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case Instruction::kFtoI: { // 浮点 to 整数 (带向下取整)
|
||||
// 目标:实现 floor(x) 的效果, C/C++中浮点转整数是截断(truncate)
|
||||
// 对于正数,floor(x) == truncate(x)
|
||||
// RISC-V的 fcvt.w.s 默认是“四舍五入到偶数”
|
||||
// 我们需要手动实现截断逻辑
|
||||
// 逻辑:
|
||||
// temp_i = fcvt.w.s(x) // 四舍五入
|
||||
// temp_f = fcvt.s.w(temp_i) // 转回浮点
|
||||
// if (x < temp_f) { // 如果原数更小,说明被“五入”了
|
||||
// result = temp_i - 1
|
||||
// } else {
|
||||
// result = temp_i
|
||||
// }
|
||||
|
||||
auto temp_i_vreg = getNewVReg(Type::getIntType());
|
||||
auto temp_f_vreg = getNewVReg(Type::getFloatType());
|
||||
auto cmp_vreg = getNewVReg(Type::getIntType());
|
||||
|
||||
// 1. fcvt.w.s temp_i_vreg, src_vreg
|
||||
auto fcvt_w = std::make_unique<MachineInstr>(RVOpcodes::FCVT_W_S);
|
||||
fcvt_w->addOperand(std::make_unique<RegOperand>(temp_i_vreg));
|
||||
fcvt_w->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
CurMBB->addInstruction(std::move(fcvt_w));
|
||||
|
||||
// 2. fcvt.s.w temp_f_vreg, temp_i_vreg
|
||||
auto fcvt_s = std::make_unique<MachineInstr>(RVOpcodes::FCVT_S_W);
|
||||
fcvt_s->addOperand(std::make_unique<RegOperand>(temp_f_vreg));
|
||||
fcvt_s->addOperand(std::make_unique<RegOperand>(temp_i_vreg));
|
||||
CurMBB->addInstruction(std::move(fcvt_s));
|
||||
|
||||
// 3. flt.s cmp_vreg, src_vreg, temp_f_vreg
|
||||
auto flt = std::make_unique<MachineInstr>(RVOpcodes::FLT_S);
|
||||
flt->addOperand(std::make_unique<RegOperand>(cmp_vreg));
|
||||
flt->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
flt->addOperand(std::make_unique<RegOperand>(temp_f_vreg));
|
||||
CurMBB->addInstruction(std::move(flt));
|
||||
|
||||
// 创建标签
|
||||
int unique_id = this->local_label_counter++;
|
||||
std::string rounded_up_label = MFunc->getName() + "_ftoi_rounded_up_" + std::to_string(unique_id);
|
||||
std::string done_label = MFunc->getName() + "_ftoi_done_" + std::to_string(unique_id);
|
||||
|
||||
// 4. bne cmp_vreg, x0, rounded_up_label
|
||||
auto bne = std::make_unique<MachineInstr>(RVOpcodes::BNE);
|
||||
bne->addOperand(std::make_unique<RegOperand>(cmp_vreg));
|
||||
bne->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
bne->addOperand(std::make_unique<LabelOperand>(rounded_up_label));
|
||||
CurMBB->addInstruction(std::move(bne));
|
||||
|
||||
// 5. else 分支: mv dest_vreg, temp_i_vreg
|
||||
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
|
||||
mv->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
mv->addOperand(std::make_unique<RegOperand>(temp_i_vreg));
|
||||
CurMBB->addInstruction(std::move(mv));
|
||||
|
||||
// 6. j done_label
|
||||
auto j = std::make_unique<MachineInstr>(RVOpcodes::J);
|
||||
j->addOperand(std::make_unique<LabelOperand>(done_label));
|
||||
CurMBB->addInstruction(std::move(j));
|
||||
|
||||
// 7. rounded_up_label:
|
||||
auto label_up = std::make_unique<MachineInstr>(RVOpcodes::LABEL);
|
||||
label_up->addOperand(std::make_unique<LabelOperand>(rounded_up_label));
|
||||
CurMBB->addInstruction(std::move(label_up));
|
||||
|
||||
// 8. addiw dest_vreg, temp_i_vreg, -1
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDIW);
|
||||
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(temp_i_vreg));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(-1));
|
||||
CurMBB->addInstruction(std::move(addi));
|
||||
|
||||
// 9. done_label:
|
||||
auto label_done = std::make_unique<MachineInstr>(RVOpcodes::LABEL);
|
||||
label_done->addOperand(std::make_unique<LabelOperand>(done_label));
|
||||
CurMBB->addInstruction(std::move(label_done));
|
||||
|
||||
case Instruction::kFtoI: { // 浮点 to 整数
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FCVT_W_S);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg)); // 目标是整数vreg
|
||||
instr->addOperand(std::make_unique<RegOperand>(src_vreg)); // 源是浮点vreg
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case Instruction::kFNeg: { // 浮点取负
|
||||
@@ -1002,7 +943,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
|
||||
// --- 步骤 3: 生成CALL指令 ---
|
||||
auto call_instr = std::make_unique<MachineInstr>(RVOpcodes::CALL);
|
||||
// 如果函数有返回值,将它的目标虚拟寄存器作为第一个操作数
|
||||
// [协议] 如果函数有返回值,将它的目标虚拟寄存器作为第一个操作数
|
||||
if (!call->getType()->isVoid()) {
|
||||
unsigned dest_vreg = getVReg(call);
|
||||
call_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@@ -1079,7 +1020,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
} else {
|
||||
// --- 处理整数/指针返回值 ---
|
||||
// 返回值需要被放入 a0
|
||||
// 在RETURN节点内加载常量返回值
|
||||
// [V2优点] 在RETURN节点内加载常量返回值
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(ret_val)) {
|
||||
auto li_instr = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::A0));
|
||||
@@ -1093,7 +1034,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
}
|
||||
}
|
||||
}
|
||||
// 函数尾声(epilogue)不由RETURN节点生成,
|
||||
// [V1设计保留] 函数尾声(epilogue)不由RETURN节点生成,
|
||||
// 而是由后续的AsmPrinter或其它Pass统一处理,这是一种常见且有效的模块化设计。
|
||||
auto ret_mi = std::make_unique<MachineInstr>(RVOpcodes::RET);
|
||||
CurMBB->addInstruction(std::move(ret_mi));
|
||||
@@ -1107,7 +1048,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto then_bb_name = cond_br->getThenBlock()->getName();
|
||||
auto else_bb_name = cond_br->getElseBlock()->getName();
|
||||
|
||||
// 检查分支条件是否为编译期常量
|
||||
// [优化] 检查分支条件是否为编译期常量
|
||||
if (auto const_cond = dynamic_cast<ConstantValue*>(condition)) {
|
||||
// 如果条件是常量,直接生成一个无条件跳转J,而不是BNE
|
||||
if (const_cond->getInt() != 0) { // 条件为 true
|
||||
@@ -1122,7 +1063,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
}
|
||||
// 如果条件不是常量,则执行标准流程
|
||||
else {
|
||||
// 为条件变量生成加载指令(如果它是常量的话,尽管上面已经处理了)
|
||||
// [修复] 为条件变量生成加载指令(如果它是常量的话,尽管上面已经处理了)
|
||||
// 这一步是为了逻辑完整,以防有其他类型的常量没有被捕获
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(condition)) {
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
@@ -1156,7 +1097,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
}
|
||||
|
||||
case DAGNode::MEMSET: {
|
||||
// Memset的核心展开逻辑在虚拟寄存器层面是正确的,无需修改。
|
||||
// [V1设计保留] Memset的核心展开逻辑在虚拟寄存器层面是正确的,无需修改。
|
||||
// 之前的bug是由于其输入(地址、值、大小)的虚拟寄存器未被正确初始化。
|
||||
// 在修复了CONSTANT/ALLOCA_ADDR的加载问题后,此处的逻辑现在可以正常工作。
|
||||
|
||||
@@ -1339,19 +1280,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
if (stride != 0) {
|
||||
// --- 为当前索引和步长生成偏移计算指令 ---
|
||||
auto offset_vreg = getNewVReg();
|
||||
|
||||
// 处理索引 - 区分常量与动态值
|
||||
unsigned index_vreg;
|
||||
auto index_vreg = getVReg(indexValue);
|
||||
|
||||
// 如果索引是常量,先用 LI 指令加载到虚拟寄存器
|
||||
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
|
||||
// 对于常量索引,直接创建新的虚拟寄存器
|
||||
index_vreg = getNewVReg();
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(index_vreg));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
} else {
|
||||
// 对于动态索引,使用已存在的虚拟寄存器
|
||||
index_vreg = getVReg(indexValue);
|
||||
}
|
||||
|
||||
// 优化:如果步长是1,可以直接移动(MV)作为偏移量,无需乘法
|
||||
@@ -1509,7 +1445,7 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
|
||||
|
||||
// 依次添加所有索引作为后续的操作数
|
||||
for (auto index : gep->getIndices()) {
|
||||
// 从 Use 对象中获取真正的 Value*
|
||||
// [修复] 从 Use 对象中获取真正的 Value*
|
||||
gep_node->operands.push_back(get_operand_node(index->getValue(), value_to_node, nodes_storage));
|
||||
}
|
||||
} else if (auto load = dynamic_cast<LoadInst*>(inst)) {
|
||||
@@ -1537,7 +1473,7 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bin->isFPBinary()) { // 假设浮点指令枚举值更大
|
||||
if (bin->getKind() >= Instruction::kFAdd) { // 假设浮点指令枚举值更大
|
||||
auto fbin_node = create_node(DAGNode::FBINARY, bin, value_to_node, nodes_storage);
|
||||
fbin_node->operands.push_back(get_operand_node(bin->getLhs(), value_to_node, nodes_storage));
|
||||
fbin_node->operands.push_back(get_operand_node(bin->getRhs(), value_to_node, nodes_storage));
|
||||
@@ -1613,7 +1549,7 @@ unsigned RISCv64ISel::getTypeSizeInBytes(Type* type) {
|
||||
}
|
||||
}
|
||||
|
||||
// 打印DAG图以供调试的辅助函数
|
||||
// [新] 打印DAG图以供调试的辅助函数
|
||||
void RISCv64ISel::print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, const std::string& bb_name) {
|
||||
// 检查是否有DEBUG宏或者全局变量,避免在非调试模式下打印
|
||||
// if (!DEBUG) return;
|
||||
@@ -1709,8 +1645,4 @@ void RISCv64ISel::print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, co
|
||||
std::cerr << "======================================\n\n";
|
||||
}
|
||||
|
||||
unsigned int RISCv64ISel::getVRegCounter() const {
|
||||
return vreg_counter;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,122 +1,6 @@
|
||||
#include "RISCv64LLIR.h"
|
||||
#include <vector>
|
||||
#include <iostream> // 用于 std::ostream 和 std::cerr
|
||||
#include <string> // 用于 std::string
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 辅助函数:将 PhysicalReg 枚举转换为可读的字符串
|
||||
std::string regToString(PhysicalReg reg) {
|
||||
switch (reg) {
|
||||
case PhysicalReg::ZERO: return "x0"; case PhysicalReg::RA: return "ra";
|
||||
case PhysicalReg::SP: return "sp"; case PhysicalReg::GP: return "gp";
|
||||
case PhysicalReg::TP: return "tp"; case PhysicalReg::T0: return "t0";
|
||||
case PhysicalReg::T1: return "t1"; case PhysicalReg::T2: return "t2";
|
||||
case PhysicalReg::S0: return "s0"; case PhysicalReg::S1: return "s1";
|
||||
case PhysicalReg::A0: return "a0"; case PhysicalReg::A1: return "a1";
|
||||
case PhysicalReg::A2: return "a2"; case PhysicalReg::A3: return "a3";
|
||||
case PhysicalReg::A4: return "a4"; case PhysicalReg::A5: return "a5";
|
||||
case PhysicalReg::A6: return "a6"; case PhysicalReg::A7: return "a7";
|
||||
case PhysicalReg::S2: return "s2"; case PhysicalReg::S3: return "s3";
|
||||
case PhysicalReg::S4: return "s4"; case PhysicalReg::S5: return "s5";
|
||||
case PhysicalReg::S6: return "s6"; case PhysicalReg::S7: return "s7";
|
||||
case PhysicalReg::S8: return "s8"; case PhysicalReg::S9: return "s9";
|
||||
case PhysicalReg::S10: return "s10"; case PhysicalReg::S11: return "s11";
|
||||
case PhysicalReg::T3: return "t3"; case PhysicalReg::T4: return "t4";
|
||||
case PhysicalReg::T5: return "t5"; case PhysicalReg::T6: return "t6";
|
||||
case PhysicalReg::F0: return "f0"; case PhysicalReg::F1: return "f1";
|
||||
case PhysicalReg::F2: return "f2"; case PhysicalReg::F3: return "f3";
|
||||
case PhysicalReg::F4: return "f4"; case PhysicalReg::F5: return "f5";
|
||||
case PhysicalReg::F6: return "f6"; case PhysicalReg::F7: return "f7";
|
||||
case PhysicalReg::F8: return "f8"; case PhysicalReg::F9: return "f9";
|
||||
case PhysicalReg::F10: return "f10"; case PhysicalReg::F11: return "f11";
|
||||
case PhysicalReg::F12: return "f12"; case PhysicalReg::F13: return "f13";
|
||||
case PhysicalReg::F14: return "f14"; case PhysicalReg::F15: return "f15";
|
||||
case PhysicalReg::F16: return "f16"; case PhysicalReg::F17: return "f17";
|
||||
case PhysicalReg::F18: return "f18"; case PhysicalReg::F19: return "f19";
|
||||
case PhysicalReg::F20: return "f20"; case PhysicalReg::F21: return "f21";
|
||||
case PhysicalReg::F22: return "f22"; case PhysicalReg::F23: return "f23";
|
||||
case PhysicalReg::F24: return "f24"; case PhysicalReg::F25: return "f25";
|
||||
case PhysicalReg::F26: return "f26"; case PhysicalReg::F27: return "f27";
|
||||
case PhysicalReg::F28: return "f28"; case PhysicalReg::F29: return "f29";
|
||||
case PhysicalReg::F30: return "f30"; case PhysicalReg::F31: return "f31";
|
||||
default: return "UNKNOWN_REG";
|
||||
}
|
||||
}
|
||||
|
||||
// 打印栈帧信息的完整实现
|
||||
void MachineFunction::dumpStackFrameInfo(std::ostream& os) const {
|
||||
const StackFrameInfo& info = frame_info;
|
||||
|
||||
os << "--- Stack Frame Info for function '" << getName() << "' ---\n";
|
||||
|
||||
// 打印尺寸信息
|
||||
os << " Sizes:\n";
|
||||
os << " Total Size: " << info.total_size << " bytes\n";
|
||||
os << " Locals Size: " << info.locals_size << " bytes\n";
|
||||
os << " Spill Size: " << info.spill_size << " bytes\n";
|
||||
os << " Callee-Saved Size: " << info.callee_saved_size << " bytes\n";
|
||||
os << "\n";
|
||||
|
||||
// 打印 Alloca 变量的偏移量
|
||||
os << " Alloca Offsets (vreg -> offset from FP):\n";
|
||||
if (info.alloca_offsets.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.alloca_offsets) {
|
||||
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
|
||||
}
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印溢出变量的偏移量
|
||||
os << " Spill Offsets (vreg -> offset from FP):\n";
|
||||
if (info.spill_offsets.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.spill_offsets) {
|
||||
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
|
||||
}
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印使用的被调用者保存寄存器
|
||||
os << " Used Callee-Saved Registers:\n";
|
||||
if (info.used_callee_saved_regs.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
os << " { ";
|
||||
for (const auto& reg : info.used_callee_saved_regs) {
|
||||
os << regToString(reg) << " ";
|
||||
}
|
||||
os << "}\n";
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印需要保存/恢复的被调用者保存寄存器 (有序)
|
||||
os << " Callee-Saved Registers to Store/Restore:\n";
|
||||
if (info.callee_saved_regs_to_store.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
os << " [ ";
|
||||
for (const auto& reg : info.callee_saved_regs_to_store) {
|
||||
os << regToString(reg) << " ";
|
||||
}
|
||||
os << "]\n";
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印最终的寄存器分配结果
|
||||
os << " Final Register Allocation Map (vreg -> preg):\n";
|
||||
if (info.vreg_to_preg_map.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.vreg_to_preg_map) {
|
||||
os << " %vreg" << pair.first << " -> " << regToString(pair.second) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
os << "---------------------------------------------------\n";
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,20 +0,0 @@
|
||||
#ifndef ELIMINATE_FRAME_INDICES_H
|
||||
#define ELIMINATE_FRAME_INDICES_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class EliminateFrameIndicesPass {
|
||||
public:
|
||||
// Pass 的主入口函数
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
|
||||
private:
|
||||
// 帮助计算类型大小的辅助函数,从原RegAlloc中移出
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // ELIMINATE_FRAME_INDICES_H
|
||||
@@ -1,30 +0,0 @@
|
||||
#ifndef RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
#define RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @class DivStrengthReduction
|
||||
* @brief 除法强度削弱优化器
|
||||
* * 将除法运算转换为乘法运算,使用magic number算法
|
||||
* 适用于除数为常数的情况,可以显著提高性能
|
||||
*/
|
||||
class DivStrengthReduction : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
DivStrengthReduction() : Pass("div-strength-reduction", Granularity::Function, PassKind::Optimization) {}
|
||||
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
bool runOnFunction(Function *F, AnalysisManager& AM) override;
|
||||
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
@@ -20,8 +20,6 @@ public:
|
||||
void setStream(std::ostream& os) { OS = &os; }
|
||||
// 辅助函数
|
||||
std::string regToString(PhysicalReg reg);
|
||||
std::string formatInstr(const MachineInstr *instr);
|
||||
|
||||
private:
|
||||
// 打印各个部分
|
||||
void printBasicBlock(MachineBasicBlock* mbb, bool debug = false);
|
||||
|
||||
@@ -22,9 +22,6 @@ private:
|
||||
// 函数级代码生成 (实现新的流水线)
|
||||
std::string function_gen(Function* func);
|
||||
|
||||
// 私有辅助函数,用于根据类型计算其占用的字节数。
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
|
||||
Module* module;
|
||||
};
|
||||
|
||||
|
||||
@@ -3,12 +3,6 @@
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
|
||||
// Forward declarations
|
||||
namespace sysy {
|
||||
class GlobalValue;
|
||||
class Value;
|
||||
}
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
@@ -23,8 +17,7 @@ public:
|
||||
// 公开接口,以便后续模块(如RegAlloc)可以查询或创建vreg
|
||||
unsigned getVReg(Value* val);
|
||||
unsigned getNewVReg() { return vreg_counter++; }
|
||||
unsigned getNewVReg(Type* type);
|
||||
unsigned getVRegCounter() const;
|
||||
unsigned getNewVReg(Type* type);
|
||||
// 获取 vreg_map 的公共接口
|
||||
const std::map<Value*, unsigned>& getVRegMap() const { return vreg_map; }
|
||||
const std::map<unsigned, Value*>& getVRegValueMap() const { return vreg_to_value_map; }
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
|
||||
#include "IR.h" // 确保包含了您自己的IR头文件
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <cstdint>
|
||||
@@ -39,14 +38,14 @@ enum class PhysicalReg {
|
||||
|
||||
// 用于内部表示物理寄存器在干扰图中的节点ID(一个简单的特殊ID,确保不与vreg_counter冲突)
|
||||
// 假设 vreg_counter 不会达到这么大的值
|
||||
PHYS_REG_START_ID = 1000000,
|
||||
PHYS_REG_START_ID = 100000,
|
||||
PHYS_REG_END_ID = PHYS_REG_START_ID + 320, // 预留足够的空间
|
||||
};
|
||||
|
||||
// RISC-V 指令操作码枚举
|
||||
enum class RVOpcodes {
|
||||
// 算术指令
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, MULH, DIV, DIVW, REM, REMW,
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, DIV, DIVW, REM, REMW,
|
||||
// 逻辑指令
|
||||
XOR, XORI, OR, ORI, AND, ANDI,
|
||||
// 移位指令
|
||||
@@ -196,11 +195,6 @@ public:
|
||||
preg = new_preg;
|
||||
is_virtual = false;
|
||||
}
|
||||
|
||||
void setVRegNum(unsigned new_vreg_num) {
|
||||
vreg_num = new_vreg_num;
|
||||
is_virtual = true; // 确保设置vreg时,操作数状态正确
|
||||
}
|
||||
private:
|
||||
unsigned vreg_num = 0;
|
||||
PhysicalReg preg = PhysicalReg::ZERO;
|
||||
@@ -280,15 +274,14 @@ private:
|
||||
// 栈帧信息
|
||||
struct StackFrameInfo {
|
||||
int locals_size = 0; // 仅为AllocaInst分配的大小
|
||||
int locals_end_offset = 0; // 记录局部变量分配结束后的偏移量(相对于s0,为负)
|
||||
int spill_size = 0; // 仅为溢出分配的大小
|
||||
int total_size = 0; // 总大小
|
||||
int callee_saved_size = 0; // 保存寄存器的大小
|
||||
std::map<unsigned, int> alloca_offsets; // <AllocaInst的vreg, 栈偏移>
|
||||
std::map<unsigned, int> spill_offsets; // <溢出vreg, 栈偏移>
|
||||
std::set<PhysicalReg> used_callee_saved_regs; // 使用的保存寄存器
|
||||
std::map<unsigned, PhysicalReg> vreg_to_preg_map; // RegAlloc最终的分配结果
|
||||
std::vector<PhysicalReg> callee_saved_regs_to_store; // 已排序的、需要存取的被调用者保存寄存器
|
||||
std::map<unsigned, PhysicalReg> vreg_to_preg_map;
|
||||
std::vector<PhysicalReg> callee_saved_regs; // 用于存储需要保存的被调用者保存寄存器列表
|
||||
};
|
||||
|
||||
// 机器函数
|
||||
@@ -302,7 +295,7 @@ public:
|
||||
StackFrameInfo& getFrameInfo() { return frame_info; }
|
||||
const std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() const { return blocks; }
|
||||
std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() { return blocks; }
|
||||
void dumpStackFrameInfo(std::ostream& os = std::cerr) const;
|
||||
|
||||
void addBlock(std::unique_ptr<MachineBasicBlock> block) {
|
||||
blocks.push_back(std::move(block));
|
||||
}
|
||||
|
||||
@@ -8,10 +8,7 @@
|
||||
#include "CalleeSavedHandler.h"
|
||||
#include "LegalizeImmediates.h"
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
#include "EliminateFrameIndices.h"
|
||||
#include "Pass.h"
|
||||
#include "DivStrengthReduction.h"
|
||||
|
||||
|
||||
namespace sysy {
|
||||
|
||||
|
||||
@@ -3,15 +3,9 @@
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h" // 包含 RISCv64ISel.h 以访问 ISel 和 Value 类型
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <stack>
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
extern int DEBUGLENGTH; // 用于限制调试输出的长度
|
||||
extern int DEEPERDEBUG; // 用于更深层次的调试输出
|
||||
|
||||
namespace sysy {
|
||||
|
||||
@@ -23,98 +17,58 @@ public:
|
||||
void run();
|
||||
|
||||
private:
|
||||
// 类型定义,与Python版本对应
|
||||
using VRegSet = std::set<unsigned>;
|
||||
using InterferenceGraph = std::map<unsigned, VRegSet>;
|
||||
using VRegStack = std::vector<unsigned>; // 使用vector模拟栈,方便遍历
|
||||
using MoveList = std::map<unsigned, std::set<const MachineInstr*>>;
|
||||
using AliasMap = std::map<unsigned, unsigned>;
|
||||
using ColorMap = std::map<unsigned, PhysicalReg>;
|
||||
using VRegMoveSet = std::set<const MachineInstr*>;
|
||||
using LiveSet = std::set<unsigned>; // 活跃虚拟寄存器集合
|
||||
using InterferenceGraph = std::map<unsigned, std::set<unsigned>>;
|
||||
|
||||
// --- 核心算法流程 ---
|
||||
void initialize();
|
||||
void build();
|
||||
void makeWorklist();
|
||||
void simplify();
|
||||
void coalesce();
|
||||
void freeze();
|
||||
void selectSpill();
|
||||
void assignColors();
|
||||
void rewriteProgram();
|
||||
bool doAllocation();
|
||||
void applyColoring();
|
||||
|
||||
void dumpState(const std::string &stage);
|
||||
|
||||
void precolorByCallingConvention();
|
||||
|
||||
// --- 辅助函数 ---
|
||||
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
|
||||
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
|
||||
void addEdge(unsigned u, unsigned v);
|
||||
VRegSet adjacent(unsigned n);
|
||||
VRegMoveSet nodeMoves(unsigned n);
|
||||
bool moveRelated(unsigned n);
|
||||
void decrementDegree(unsigned m);
|
||||
void enableMoves(const VRegSet& nodes);
|
||||
unsigned getAlias(unsigned n);
|
||||
void addWorklist(unsigned u);
|
||||
bool briggsHeuristic(unsigned u, unsigned v);
|
||||
bool georgeHeuristic(unsigned u, unsigned v);
|
||||
void combine(unsigned u, unsigned v);
|
||||
void freezeMoves(unsigned u);
|
||||
void collectUsedCalleeSavedRegs();
|
||||
bool isFPVReg(unsigned vreg) const;
|
||||
std::string regToString(PhysicalReg reg);
|
||||
std::string regIdToString(unsigned id);
|
||||
|
||||
// --- 活跃性分析 ---
|
||||
// 栈帧管理
|
||||
void eliminateFrameIndices();
|
||||
|
||||
// 活跃性分析
|
||||
void analyzeLiveness();
|
||||
|
||||
MachineFunction* MFunc;
|
||||
RISCv64ISel* ISel;
|
||||
// 构建干扰图
|
||||
void buildInterferenceGraph();
|
||||
|
||||
// --- 算法数据结构 ---
|
||||
// 寄存器池
|
||||
// 图着色分配寄存器
|
||||
void colorGraph();
|
||||
|
||||
// 重写函数,替换vreg并插入溢出代码
|
||||
void rewriteFunction();
|
||||
|
||||
// 辅助函数,获取指令的Use/Def集合
|
||||
void getInstrUseDef(MachineInstr* instr, LiveSet& use, LiveSet& def);
|
||||
|
||||
// 辅助函数,处理调用约定
|
||||
void handleCallingConvention();
|
||||
|
||||
MachineFunction* MFunc;
|
||||
|
||||
// 活跃性分析结果
|
||||
std::map<const MachineInstr*, LiveSet> live_in_map;
|
||||
std::map<const MachineInstr*, LiveSet> live_out_map;
|
||||
|
||||
// 干扰图
|
||||
InterferenceGraph interference_graph;
|
||||
|
||||
// 图着色结果
|
||||
std::map<unsigned, PhysicalReg> color_map; // vreg -> preg
|
||||
std::set<unsigned> spilled_vregs; // 被溢出的vreg集合
|
||||
|
||||
// 可用的物理寄存器池
|
||||
std::vector<PhysicalReg> allocable_int_regs;
|
||||
std::vector<PhysicalReg> allocable_fp_regs;
|
||||
int K_int; // 整数寄存器数量
|
||||
int K_fp; // 浮点寄存器数量
|
||||
|
||||
// 节点集合
|
||||
VRegSet precolored; // 预着色的节点 (物理寄存器)
|
||||
VRegSet initial; // 初始的、所有待处理的虚拟寄存器节点
|
||||
VRegSet simplifyWorklist;
|
||||
VRegSet freezeWorklist;
|
||||
VRegSet spillWorklist;
|
||||
VRegSet spilledNodes;
|
||||
VRegSet coalescedNodes;
|
||||
VRegSet coloredNodes;
|
||||
VRegStack selectStack;
|
||||
|
||||
// Move指令相关
|
||||
std::set<const MachineInstr*> coalescedMoves;
|
||||
std::set<const MachineInstr*> constrainedMoves;
|
||||
std::set<const MachineInstr*> frozenMoves;
|
||||
std::set<const MachineInstr*> worklistMoves;
|
||||
std::set<const MachineInstr*> activeMoves;
|
||||
|
||||
// 数据结构
|
||||
InterferenceGraph adjSet;
|
||||
std::map<unsigned, VRegSet> adjList; // 邻接表
|
||||
std::map<unsigned, int> degree;
|
||||
MoveList moveList;
|
||||
AliasMap alias;
|
||||
ColorMap color_map;
|
||||
|
||||
// 活跃性分析结果
|
||||
std::map<const MachineInstr*, VRegSet> live_in_map;
|
||||
std::map<const MachineInstr*, VRegSet> live_out_map;
|
||||
// 存储vreg到IR Value*的反向映射
|
||||
// 这个map将在run()函数开始时被填充,并在rewriteFunction()中使用。
|
||||
std::map<unsigned, Value*> vreg_to_value_map;
|
||||
std::map<PhysicalReg, unsigned> preg_to_vreg_id_map; // 物理寄存器到特殊vreg ID的映射
|
||||
|
||||
// 用于计算类型大小的辅助函数
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
|
||||
// 辅助函数,用于打印集合
|
||||
static void printLiveSet(const LiveSet& s, const std::string& name, std::ostream& os);
|
||||
|
||||
// VReg -> Value* 和 VReg -> Type* 的映射
|
||||
const std::map<unsigned, Value*>& vreg_to_value_map;
|
||||
const std::map<unsigned, Type*>& vreg_type_map;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
@@ -20,10 +20,6 @@
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// Global cleanup function to release all statically allocated IR objects
|
||||
void cleanupIRPools();
|
||||
|
||||
/**
|
||||
* \defgroup type Types
|
||||
* @brief Sysy的类型系统
|
||||
@@ -87,7 +83,6 @@ class Type {
|
||||
auto as() const -> std::enable_if_t<std::is_base_of_v<Type, T>, T *> {
|
||||
return dynamic_cast<T *>(const_cast<Type *>(this));
|
||||
}
|
||||
virtual void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
class PointerType : public Type {
|
||||
@@ -99,9 +94,6 @@ class PointerType : public Type {
|
||||
|
||||
public:
|
||||
static PointerType* get(Type *baseType); ///< 获取指向baseType的Pointer类型
|
||||
|
||||
// Cleanup method to release all cached pointer types (call at program exit)
|
||||
static void cleanup();
|
||||
|
||||
public:
|
||||
Type* getBaseType() const { return baseType; } ///< 获取指向的类型
|
||||
@@ -119,9 +111,6 @@ class FunctionType : public Type {
|
||||
public:
|
||||
/// 获取返回值类型为returnType, 形参类型列表为paramTypes的Function类型
|
||||
static FunctionType* get(Type *returnType, const std::vector<Type *> ¶mTypes = {});
|
||||
|
||||
// Cleanup method to release all cached function types (call at program exit)
|
||||
static void cleanup();
|
||||
|
||||
public:
|
||||
Type* getReturnType() const { return returnType; } ///< 获取返回值类信息
|
||||
@@ -134,9 +123,6 @@ class ArrayType : public Type {
|
||||
// elements:数组的元素类型 (例如,int[3] 的 elementType 是 int)
|
||||
// numElements:该维度的大小 (例如,int[3] 的 numElements 是 3)
|
||||
static ArrayType *get(Type *elementType, unsigned numElements);
|
||||
|
||||
// Cleanup method to release all cached array types (call at program exit)
|
||||
static void cleanup();
|
||||
|
||||
Type *getElementType() const { return elementType; }
|
||||
unsigned getNumElements() const { return numElements; }
|
||||
@@ -216,11 +202,9 @@ class Use {
|
||||
|
||||
public:
|
||||
unsigned getIndex() const { return index; } ///< 返回value在User操作数中的位置
|
||||
void setIndex(int newIndex) { index = newIndex; } ///< 设置value在User操作数中的位置
|
||||
User* getUser() const { return user; } ///< 返回使用者
|
||||
Value* getValue() const { return value; } ///< 返回被使用的值
|
||||
void setValue(Value *newValue) { value = newValue; } ///< 将被使用的值设置为newValue
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
//! The base class of all value types
|
||||
@@ -245,15 +229,7 @@ class Value {
|
||||
std::list<std::shared_ptr<Use>>& getUses() { return uses; } ///< 获取使用关系列表
|
||||
void addUse(const std::shared_ptr<Use> &use) { uses.push_back(use); } ///< 添加使用关系
|
||||
void replaceAllUsesWith(Value *value); ///< 将原来使用该value的使用者全变为使用给定参数value并修改相应use关系
|
||||
void removeUse(const std::shared_ptr<Use> &use) {
|
||||
assert(use != nullptr && "Use cannot be null");
|
||||
assert(use->getValue() == this && "Use being removed does NOT point to this Value!");
|
||||
auto it = std::find(uses.begin(), uses.end(), use);
|
||||
assert(it != uses.end() && "Use not found in Value's uses");
|
||||
uses.remove(use);
|
||||
} ///< 删除使用关系use
|
||||
void removeAllUses();
|
||||
virtual void print(std::ostream& os) const = 0; ///< 输出值信息到输出流
|
||||
void removeUse(const std::shared_ptr<Use> &use) { uses.remove(use); } ///< 删除使用关系use
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -380,9 +356,6 @@ public:
|
||||
|
||||
// Static factory method to get a canonical ConstantValue from the pool
|
||||
static ConstantValue* get(Type* type, ConstantValVariant val);
|
||||
|
||||
// Cleanup method to release all cached constants (call at program exit)
|
||||
static void cleanup();
|
||||
|
||||
// Helper methods to access constant values with appropriate casting
|
||||
int getInt() const {
|
||||
@@ -421,7 +394,6 @@ public:
|
||||
|
||||
virtual bool isZero() const = 0;
|
||||
virtual bool isOne() const = 0;
|
||||
void print(std::ostream& os) const = 0;
|
||||
};
|
||||
|
||||
class ConstantInteger : public ConstantValue {
|
||||
@@ -448,7 +420,6 @@ public:
|
||||
|
||||
bool isZero() const override { return constVal == 0; }
|
||||
bool isOne() const override { return constVal == 1; }
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
class ConstantFloating : public ConstantValue {
|
||||
@@ -475,7 +446,6 @@ public:
|
||||
|
||||
bool isZero() const override { return constFVal == 0.0f; }
|
||||
bool isOne() const override { return constFVal == 1.0f; }
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
class UndefinedValue : public ConstantValue {
|
||||
@@ -490,9 +460,6 @@ protected:
|
||||
|
||||
public:
|
||||
static UndefinedValue* get(Type* type);
|
||||
|
||||
// Cleanup method to release all cached undefined values (call at program exit)
|
||||
static void cleanup();
|
||||
|
||||
size_t hash() const override {
|
||||
return std::hash<Type*>{}(getType());
|
||||
@@ -510,7 +477,6 @@ public:
|
||||
|
||||
bool isZero() const override { return false; }
|
||||
bool isOne() const override { return false; }
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
// --- End of refactored ConstantValue and related classes ---
|
||||
@@ -548,15 +514,12 @@ public:
|
||||
explicit BasicBlock(Function *parent, const std::string &name = "")
|
||||
: Value(Type::getLabelType(), name), parent(parent) {}
|
||||
~BasicBlock() override {
|
||||
// for (auto pre : predecessors) {
|
||||
// pre->removeSuccessor(this);
|
||||
// }
|
||||
// for (auto suc : successors) {
|
||||
// suc->removePredecessor(this);
|
||||
// }
|
||||
// 这些关系应该在 BasicBlock 被从 Function 中移除时,
|
||||
// 由负责 CFG 优化的 Pass (例如 SCCP 的 RemoveDeadBlock) 显式地清理。
|
||||
// 析构函数只负责清理 BasicBlock 自身拥有的资源(例如,指令列表)。
|
||||
for (auto pre : predecessors) {
|
||||
pre->removeSuccessor(this);
|
||||
}
|
||||
for (auto suc : successors) {
|
||||
suc->removePredecessor(this);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -610,9 +573,7 @@ public:
|
||||
if (iter != predecessors.end()) {
|
||||
predecessors.erase(iter);
|
||||
} else {
|
||||
// 如果没有找到前驱块,可能是因为它已经被移除或不存在
|
||||
// 这可能是一个错误情况,或者是因为在CFG优化过程中已经处理
|
||||
// assert(false && "Predecessor block not found in BasicBlock");
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
void removeSuccessor(BasicBlock *block) {
|
||||
@@ -620,9 +581,7 @@ public:
|
||||
if (iter != successors.end()) {
|
||||
successors.erase(iter);
|
||||
} else {
|
||||
// 如果没有找到后继块,可能是因为它已经被移除或不存在
|
||||
// 这可能是一个错误情况,或者是因为在CFG优化过程中已经处理
|
||||
// assert(false && "Successor block not found in BasicBlock");
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
void replacePredecessor(BasicBlock *oldBlock, BasicBlock *newBlock) {
|
||||
@@ -640,7 +599,7 @@ public:
|
||||
prev->addSuccessor(next);
|
||||
next->addPredecessor(prev);
|
||||
}
|
||||
iterator removeInst(iterator pos) { return instructions.erase(pos); }
|
||||
void removeInst(iterator pos) { instructions.erase(pos); }
|
||||
void removeInst(Instruction *inst) {
|
||||
auto pos = std::find_if(instructions.begin(), instructions.end(),
|
||||
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
|
||||
@@ -651,11 +610,6 @@ public:
|
||||
}
|
||||
} ///< 移除指定位置的指令
|
||||
iterator moveInst(iterator sourcePos, iterator targetPos, BasicBlock *block);
|
||||
|
||||
/// 清理基本块中的所有使用关系
|
||||
void cleanup();
|
||||
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
//! User is the abstract base type of `Value` types which use other `Value` as
|
||||
@@ -681,7 +635,11 @@ class User : public Value {
|
||||
operands.emplace_back(std::make_shared<Use>(operands.size(), this, value));
|
||||
value->addUse(operands.back());
|
||||
} ///< 增加操作数
|
||||
void removeOperand(unsigned index);
|
||||
void removeOperand(unsigned index) {
|
||||
auto value = getOperand(index);
|
||||
value->removeUse(operands[index]);
|
||||
operands.erase(operands.begin() + index);
|
||||
} ///< 移除操作数
|
||||
template <typename ContainerT>
|
||||
void addOperands(const ContainerT &newoperands) {
|
||||
for (auto value : newoperands) {
|
||||
@@ -690,9 +648,6 @@ class User : public Value {
|
||||
} ///< 增加多个操作数
|
||||
void replaceOperand(unsigned index, Value *value); ///< 替换操作数
|
||||
void setOperand(unsigned index, Value *value); ///< 设置操作数
|
||||
|
||||
/// 清理用户的所有操作数使用关系
|
||||
void cleanup();
|
||||
};
|
||||
|
||||
/*!
|
||||
@@ -740,19 +695,19 @@ class Instruction : public User {
|
||||
kCondBr = 0x1UL << 30,
|
||||
kBr = 0x1UL << 31,
|
||||
kReturn = 0x1UL << 32,
|
||||
kUnreachable = 0x1UL << 33,
|
||||
// mem op
|
||||
kAlloca = 0x1UL << 34,
|
||||
kLoad = 0x1UL << 35,
|
||||
kStore = 0x1UL << 36,
|
||||
kGetElementPtr = 0x1UL << 37,
|
||||
kMemset = 0x1UL << 38,
|
||||
kAlloca = 0x1UL << 33,
|
||||
kLoad = 0x1UL << 34,
|
||||
kStore = 0x1UL << 35,
|
||||
kGetElementPtr = 0x1UL << 36,
|
||||
kMemset = 0x1UL << 37,
|
||||
// kGetSubArray = 0x1UL << 38,
|
||||
// Constant Kind removed as Constants are now Values, not Instructions.
|
||||
// kConstant = 0x1UL << 37, // Conflicts with kMemset if kept as is
|
||||
// phi
|
||||
kPhi = 0x1UL << 39,
|
||||
kBitItoF = 0x1UL << 40,
|
||||
kBitFtoI = 0x1UL << 41,
|
||||
kSRA = 0x1UL << 42,
|
||||
kMulh = 0x1UL << 43
|
||||
};
|
||||
|
||||
protected:
|
||||
@@ -770,57 +725,57 @@ public:
|
||||
std::string getKindString() const{
|
||||
switch (kind) {
|
||||
case kInvalid:
|
||||
return "invalid";
|
||||
return "Invalid";
|
||||
case kAdd:
|
||||
return "add";
|
||||
return "Add";
|
||||
case kSub:
|
||||
return "sub";
|
||||
return "Sub";
|
||||
case kMul:
|
||||
return "mul";
|
||||
return "Mul";
|
||||
case kDiv:
|
||||
return "sdiv";
|
||||
return "Div";
|
||||
case kRem:
|
||||
return "srem";
|
||||
return "Rem";
|
||||
case kICmpEQ:
|
||||
return "icmp eq";
|
||||
return "ICmpEQ";
|
||||
case kICmpNE:
|
||||
return "icmp ne";
|
||||
return "ICmpNE";
|
||||
case kICmpLT:
|
||||
return "icmp slt";
|
||||
return "ICmpLT";
|
||||
case kICmpGT:
|
||||
return "icmp sgt";
|
||||
return "ICmpGT";
|
||||
case kICmpLE:
|
||||
return "icmp sle";
|
||||
return "ICmpLE";
|
||||
case kICmpGE:
|
||||
return "icmp sge";
|
||||
return "ICmpGE";
|
||||
case kFAdd:
|
||||
return "fadd";
|
||||
return "FAdd";
|
||||
case kFSub:
|
||||
return "fsub";
|
||||
return "FSub";
|
||||
case kFMul:
|
||||
return "fmul";
|
||||
return "FMul";
|
||||
case kFDiv:
|
||||
return "fdiv";
|
||||
return "FDiv";
|
||||
case kFCmpEQ:
|
||||
return "fcmp oeq";
|
||||
return "FCmpEQ";
|
||||
case kFCmpNE:
|
||||
return "fcmp one";
|
||||
return "FCmpNE";
|
||||
case kFCmpLT:
|
||||
return "fcmp olt";
|
||||
return "FCmpLT";
|
||||
case kFCmpGT:
|
||||
return "fcmp ogt";
|
||||
return "FCmpGT";
|
||||
case kFCmpLE:
|
||||
return "fcmp ole";
|
||||
return "FCmpLE";
|
||||
case kFCmpGE:
|
||||
return "fcmp oge";
|
||||
return "FCmpGE";
|
||||
case kAnd:
|
||||
return "and";
|
||||
return "And";
|
||||
case kOr:
|
||||
return "or";
|
||||
return "Or";
|
||||
case kNeg:
|
||||
return "neg";
|
||||
return "Neg";
|
||||
case kNot:
|
||||
return "not";
|
||||
return "Not";
|
||||
case kFNeg:
|
||||
return "FNeg";
|
||||
case kFNot:
|
||||
@@ -828,35 +783,27 @@ public:
|
||||
case kFtoI:
|
||||
return "FtoI";
|
||||
case kItoF:
|
||||
return "iToF";
|
||||
return "IToF";
|
||||
case kCall:
|
||||
return "call";
|
||||
return "Call";
|
||||
case kCondBr:
|
||||
return "condBr";
|
||||
return "CondBr";
|
||||
case kBr:
|
||||
return "br";
|
||||
return "Br";
|
||||
case kReturn:
|
||||
return "return";
|
||||
case kUnreachable:
|
||||
return "unreachable";
|
||||
return "Return";
|
||||
case kAlloca:
|
||||
return "alloca";
|
||||
return "Alloca";
|
||||
case kLoad:
|
||||
return "load";
|
||||
return "Load";
|
||||
case kStore:
|
||||
return "store";
|
||||
return "Store";
|
||||
case kGetElementPtr:
|
||||
return "getElementPtr";
|
||||
return "GetElementPtr";
|
||||
case kMemset:
|
||||
return "memset";
|
||||
return "Memset";
|
||||
case kPhi:
|
||||
return "phi";
|
||||
case kBitItoF:
|
||||
return "BitItoF";
|
||||
case kBitFtoI:
|
||||
return "BitFtoI";
|
||||
case kSRA:
|
||||
return "ashr";
|
||||
return "Phi";
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
@@ -868,15 +815,11 @@ public:
|
||||
|
||||
bool isBinary() const {
|
||||
static constexpr uint64_t BinaryOpMask =
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSRA | kMulh) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE);
|
||||
return kind & BinaryOpMask;
|
||||
}
|
||||
bool isFPBinary() const {
|
||||
static constexpr uint64_t FPBinaryOpMask =
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
|
||||
(kFAdd | kFSub | kFMul | kFDiv) |
|
||||
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
|
||||
return kind & FPBinaryOpMask;
|
||||
return kind & BinaryOpMask;
|
||||
}
|
||||
bool isUnary() const {
|
||||
static constexpr uint64_t UnaryOpMask =
|
||||
@@ -889,7 +832,7 @@ public:
|
||||
return kind & MemoryOpMask;
|
||||
}
|
||||
bool isTerminator() const {
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn | kUnreachable;
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn;
|
||||
return kind & TerminatorOpMask;
|
||||
}
|
||||
bool isCmp() const {
|
||||
@@ -909,7 +852,6 @@ public:
|
||||
}
|
||||
bool isUnconditional() const { return kind == kBr; }
|
||||
bool isConditional() const { return kind == kCondBr; }
|
||||
bool isCondBr() const { return kind == kCondBr; }
|
||||
bool isPhi() const { return kind == kPhi; }
|
||||
bool isAlloca() const { return kind == kAlloca; }
|
||||
bool isLoad() const { return kind == kLoad; }
|
||||
@@ -918,15 +860,10 @@ public:
|
||||
bool isMemset() const { return kind == kMemset; }
|
||||
bool isCall() const { return kind == kCall; }
|
||||
bool isReturn() const { return kind == kReturn; }
|
||||
bool isUnreachable() const { return kind == kUnreachable; }
|
||||
bool isDefine() const {
|
||||
static constexpr uint64_t DefineOpMask = kAlloca | kStore | kPhi;
|
||||
return (kind & DefineOpMask) != 0U;
|
||||
}
|
||||
|
||||
virtual ~Instruction() = default;
|
||||
|
||||
virtual void print(std::ostream& os) const = 0;
|
||||
}; // class Instruction
|
||||
|
||||
class Function;
|
||||
@@ -948,56 +885,38 @@ class PhiInst : public Instruction {
|
||||
const std::string &name = "")
|
||||
: Instruction(Kind::kPhi, type, parent, name), vsize(rhs.size()) {
|
||||
assert(rhs.size() == Blocks.size() && "PhiInst: rhs and Blocks must have the same size");
|
||||
for(size_t i = 0; i < vsize; ++i) {
|
||||
for(size_t i = 0; i < rhs.size(); ++i) {
|
||||
addOperand(rhs[i]);
|
||||
addOperand(Blocks[i]);
|
||||
blk2val[Blocks[i]] = rhs[i];
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Value* getValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
|
||||
BasicBlock* getBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
|
||||
|
||||
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
|
||||
|
||||
Value* getvalfromBlk(BasicBlock* blk);
|
||||
BasicBlock* getBlkfromVal(Value* val);
|
||||
|
||||
unsigned getNumIncomingValues() const { return vsize; } ///< 获取传入值的数量
|
||||
Value *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } ///< 获取指定位置的传入值
|
||||
BasicBlock *getIncomingBlock(unsigned Idx) const {return dynamic_cast<BasicBlock *>(getOperand(Idx * 2 + 1)); } ///< 获取指定位置的传入基本块
|
||||
|
||||
Value* getValfromBlk(BasicBlock* block);
|
||||
BasicBlock* getBlkfromVal(Value* value);
|
||||
|
||||
void addIncoming(Value *value, BasicBlock *block) {
|
||||
assert(value && block && "PhiInst: value and block cannot be null");
|
||||
assert(value && block && "PhiInst: value and block must not be null");
|
||||
addOperand(value);
|
||||
addOperand(block);
|
||||
blk2val[block] = value;
|
||||
vsize++;
|
||||
} ///< 添加传入值和对应的基本块
|
||||
void removeIncoming(unsigned Idx) {
|
||||
assert(Idx < vsize && "PhiInst: Index out of bounds");
|
||||
auto blk = getIncomingBlock(Idx);
|
||||
removeOperand(Idx * 2 + 1); // Remove block
|
||||
removeOperand(Idx * 2); // Remove value
|
||||
blk2val.erase(blk);
|
||||
vsize--;
|
||||
} ///< 移除指定位置的传入值和对应的基本块
|
||||
// 移除指定的传入值或基本块
|
||||
void removeIncomingValue(Value *value);
|
||||
void removeIncomingBlock(BasicBlock *block);
|
||||
// 设置指定位置的传入值或基本块
|
||||
void setIncomingValue(unsigned Idx, Value *value);
|
||||
void setIncomingBlock(unsigned Idx, BasicBlock *block);
|
||||
// 替换指定位置的传入值或基本块(原理是删除再添加)保留旧块或者旧值
|
||||
void replaceIncomingValue(Value *oldValue, Value *newValue);
|
||||
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock);
|
||||
// 替换指定位置的传入值或基本块(原理是删除再添加)
|
||||
void replaceIncomingValue(Value *oldValue, Value *newValue, BasicBlock *newBlock);
|
||||
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
|
||||
void refreshMap() {
|
||||
blk2val.clear();
|
||||
for (unsigned i = 0; i < vsize; ++i) {
|
||||
blk2val[getIncomingBlock(i)] = getIncomingValue(i);
|
||||
}
|
||||
} ///< 刷新块到值的映射关系
|
||||
|
||||
void delValue(Value* val);
|
||||
void delBlk(BasicBlock* blk);
|
||||
|
||||
void replaceBlk(BasicBlock* newBlk, unsigned k);
|
||||
void replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk);
|
||||
void refreshB2VMap();
|
||||
|
||||
auto getValues() { return make_range(std::next(operand_begin()), operand_end()); }
|
||||
void print(std::ostream& os) const override;
|
||||
};
|
||||
|
||||
|
||||
@@ -1006,14 +925,16 @@ class CallInst : public Instruction {
|
||||
friend class IRBuilder;
|
||||
|
||||
protected:
|
||||
CallInst(Function *callee, const std::vector<Value *> &args, BasicBlock *parent = nullptr, const std::string &name = "");
|
||||
CallInst(Function *callee, const std::vector<Value *> &args = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "");
|
||||
|
||||
|
||||
public:
|
||||
Function *getCallee() const;
|
||||
Function* getCallee() const;
|
||||
auto getArguments() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
|
||||
}; // class CallInst
|
||||
|
||||
//! Unary instruction, includes '!', '-' and type conversion.
|
||||
@@ -1031,7 +952,7 @@ protected:
|
||||
|
||||
public:
|
||||
Value* getOperand() const { return User::getOperand(0); }
|
||||
void print(std::ostream& os) const override;
|
||||
|
||||
}; // class UnaryInst
|
||||
|
||||
//! Binary instruction, e.g., arithmatic, relation, logic, etc.
|
||||
@@ -1110,7 +1031,6 @@ public:
|
||||
// 后端处理数组访存操作时需要创建计算地址的指令,需要在外部构造 BinaryInst 对象
|
||||
return new BinaryInst(kind, type, lhs, rhs, parent, name);
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
}; // class BinaryInst
|
||||
|
||||
//! The return statement
|
||||
@@ -1131,7 +1051,6 @@ class ReturnInst : public Instruction {
|
||||
Value* getReturnValue() const {
|
||||
return hasReturnValue() ? getOperand(0) : nullptr;
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
};
|
||||
|
||||
//! Unconditional branch
|
||||
@@ -1140,10 +1059,12 @@ class UncondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
UncondBrInst(BasicBlock *block,
|
||||
UncondBrInst(BasicBlock *block, std::vector<Value *> args,
|
||||
BasicBlock *parent = nullptr)
|
||||
: Instruction(kBr, Type::getVoidType(), parent, "") {
|
||||
// assert(block->getNumArguments() == args.size());
|
||||
addOperand(block);
|
||||
addOperands(args);
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -1151,17 +1072,7 @@ public:
|
||||
auto getArguments() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设无条件分支的目标块是它的第一个操作数
|
||||
if (getNumOperands() > 0) {
|
||||
if (auto target_bb = dynamic_cast<BasicBlock *>(getOperand(0))) {
|
||||
succs.push_back(target_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
|
||||
}; // class UncondBrInst
|
||||
|
||||
//! Conditional branch
|
||||
@@ -1172,12 +1083,17 @@ class CondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
BasicBlock *parent = nullptr)
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs,
|
||||
const std::vector<Value *> &elseArgs, BasicBlock *parent = nullptr)
|
||||
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
|
||||
// assert(thenBlock->getNumArguments() == thenArgs.size() and
|
||||
// elseBlock->getNumArguments() == elseArgs.size());
|
||||
addOperand(condition);
|
||||
addOperand(thenBlock);
|
||||
addOperand(elseBlock);
|
||||
addOperands(thenArgs);
|
||||
addOperands(elseArgs);
|
||||
}
|
||||
public:
|
||||
Value* getCondition() const { return getOperand(0); }
|
||||
@@ -1187,39 +1103,29 @@ public:
|
||||
BasicBlock* getElseBlock() const {
|
||||
return dynamic_cast<BasicBlock *>(getOperand(2));
|
||||
}
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设条件分支的真实块是第二个操作数,假块是第三个操作数
|
||||
// 操作数通常是:[0] 条件值, [1] TrueTargetBlock, [2] FalseTargetBlock
|
||||
if (getNumOperands() > 2) {
|
||||
if (auto true_bb = getThenBlock()) {
|
||||
succs.push_back(true_bb);
|
||||
}
|
||||
if (auto false_bb = getElseBlock()) {
|
||||
succs.push_back(false_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
}; // class CondBrInst
|
||||
// auto getThenArguments() const {
|
||||
// auto begin = std::next(operand_begin(), 3);
|
||||
// // auto end = std::next(begin, getThenBlock()->getNumArguments());
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
// auto getElseArguments() const {
|
||||
// auto begin =
|
||||
// std::next(operand_begin(), 3 + getThenBlock()->getNumArguments());
|
||||
// auto end = operand_end();
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
|
||||
class UnreachableInst : public Instruction {
|
||||
public:
|
||||
// 构造函数:设置指令类型为 kUnreachable
|
||||
explicit UnreachableInst(const std::string& name, BasicBlock *parent = nullptr)
|
||||
: Instruction(kUnreachable, Type::getVoidType(), parent, "") {}
|
||||
void print(std::ostream& os) const { os << "unreachable"; }
|
||||
};
|
||||
}; // class CondBrInst
|
||||
|
||||
//! Allocate memory for stack variables, used for non-global variable declartion
|
||||
class AllocaInst : public Instruction {
|
||||
friend class IRBuilder;
|
||||
friend class Function;
|
||||
protected:
|
||||
AllocaInst(Type *type,
|
||||
AllocaInst(Type *type, const std::vector<Value *> &dims = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kAlloca, type, parent, name) {
|
||||
addOperands(dims);
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -1227,7 +1133,10 @@ public:
|
||||
Type* getAllocatedType() const {
|
||||
return getType()->as<PointerType>()->getBaseType();
|
||||
} ///< 获取分配的类型
|
||||
void print(std::ostream& os) const override;
|
||||
int getNumDims() const { return getNumOperands(); }
|
||||
auto getDims() const { return getOperands(); }
|
||||
Value* getDim(int index) { return getOperand(index); }
|
||||
|
||||
}; // class AllocaInst
|
||||
|
||||
|
||||
@@ -1265,7 +1174,6 @@ public:
|
||||
BasicBlock *parent = nullptr, const std::string &name = "") {
|
||||
return new GetElementPtrInst(resultType, basePointer, indices, parent, name);
|
||||
}
|
||||
void print(std::ostream& os) const override;
|
||||
};
|
||||
|
||||
//! Load a value from memory address specified by a pointer value
|
||||
@@ -1274,16 +1182,22 @@ class LoadInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
LoadInst(Value *pointer,
|
||||
LoadInst(Value *pointer, const std::vector<Value *> &indices = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kLoad, pointer->getType()->as<PointerType>()->getBaseType(),
|
||||
parent, name) {
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 1; }
|
||||
Value* getPointer() const { return getOperand(0); }
|
||||
void print(std::ostream& os) const override;
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 1); }
|
||||
|
||||
}; // class LoadInst
|
||||
|
||||
//! Store a value to memory address specified by a pointer value
|
||||
@@ -1293,16 +1207,23 @@ class StoreInst : public Instruction {
|
||||
|
||||
protected:
|
||||
StoreInst(Value *value, Value *pointer,
|
||||
const std::vector<Value *> &indices = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kStore, Type::getVoidType(), parent, name) {
|
||||
addOperand(value);
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 2; }
|
||||
Value* getValue() const { return getOperand(0); }
|
||||
Value* getPointer() const { return getOperand(1); }
|
||||
void print(std::ostream& os) const override;
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin(), 2), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 2); }
|
||||
|
||||
}; // class StoreInst
|
||||
|
||||
//! Memset instruction
|
||||
@@ -1332,7 +1253,7 @@ public:
|
||||
Value* getBegin() const { return getOperand(1); }
|
||||
Value* getSize() const { return getOperand(2); }
|
||||
Value* getValue() const { return getOperand(3); }
|
||||
void print(std::ostream& os) const override;
|
||||
|
||||
};
|
||||
|
||||
class GlobalValue;
|
||||
@@ -1350,11 +1271,6 @@ public:
|
||||
public:
|
||||
Function* getParent() const { return func; }
|
||||
int getIndex() const { return index; }
|
||||
|
||||
/// 清理参数的使用关系
|
||||
void cleanup();
|
||||
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
|
||||
@@ -1432,11 +1348,6 @@ protected:
|
||||
blocks.emplace_front(block);
|
||||
return block;
|
||||
}
|
||||
|
||||
/// 清理函数中的所有使用关系
|
||||
void cleanup();
|
||||
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
//! Global value declared at file scope
|
||||
@@ -1450,18 +1361,20 @@ protected:
|
||||
|
||||
protected:
|
||||
GlobalValue(Module *parent, Type *type, const std::string &name,
|
||||
const std::vector<Value *> &dims = {},
|
||||
ValueCounter init = {})
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
// addOperands(dims);
|
||||
// 维度信息已经被记录到Type中,dim只是为了方便初始化
|
||||
numDims = 0;
|
||||
numDims = dims.size();
|
||||
if (init.size() == 0) {
|
||||
unsigned num = 1;
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
num *= arrayType->getNumElements();
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
for (unsigned i = 0; i < numDims; i++) {
|
||||
// Assume dims elements are ConstantInteger and cast appropriately
|
||||
auto dim_val = dynamic_cast<ConstantInteger*>(dims[i]);
|
||||
assert(dim_val && "GlobalValue dims must be constant integers");
|
||||
num *= dim_val->getInt();
|
||||
}
|
||||
if (dynamic_cast<PointerType *>(type)->getBaseType() == Type::getFloatType()) {
|
||||
init.push_back(ConstantFloating::get(0.0F), num); // Use new constant factory
|
||||
@@ -1473,6 +1386,9 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
// auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
unsigned getNumIndices() const {
|
||||
return numDims;
|
||||
} ///< 获取维度数量
|
||||
@@ -1502,7 +1418,6 @@ public:
|
||||
return getByIndex(index);
|
||||
} ///< 通过多维索引indices获取初始值
|
||||
const ValueCounter& getInitValues() const { return initValues; }
|
||||
void print(std::ostream& os) const;
|
||||
}; // class GlobalValue
|
||||
|
||||
|
||||
@@ -1515,19 +1430,13 @@ class ConstantVariable : public Value {
|
||||
ValueCounter initValues; ///< 值
|
||||
|
||||
protected:
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init)
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {})
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
// numDims = dims.size();
|
||||
numDims = 0;
|
||||
if(type->as<PointerType>()->getBaseType()->isArray()) {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
}
|
||||
}
|
||||
numDims = dims.size();
|
||||
initValues = init;
|
||||
// addOperands(dims); 同GlobalValue,维度信息已经被记录到Type中,dim只是为了方便初始化
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -1559,9 +1468,10 @@ class ConstantVariable : public Value {
|
||||
|
||||
return getByIndex(index);
|
||||
} ///< 通过多维索引indices获取初始值
|
||||
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
// auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
const ValueCounter& getInitValues() const { return initValues; } ///< 获取初始值
|
||||
void print(std::ostream& os) const;
|
||||
void print_init(std::ostream& os) const;
|
||||
};
|
||||
|
||||
using SymbolTableNode = struct SymbolTableNode {
|
||||
@@ -1584,8 +1494,6 @@ class SymbolTable {
|
||||
|
||||
Value* getVariable(const std::string &name) const; ///< 根据名字name以及当前作用域获取变量
|
||||
Value* addVariable(const std::string &name, Value *variable); ///< 添加变量
|
||||
void registerParameterName(const std::string &name); ///< 注册函数参数名字,避免alloca重名
|
||||
void addVariableDirectly(const std::string &name, Value *variable); ///< 直接添加变量到当前作用域,不重命名
|
||||
std::vector<std::unique_ptr<GlobalValue>>& getGlobals(); ///< 获取全局变量列表
|
||||
const std::vector<std::unique_ptr<ConstantVariable>>& getConsts() const; ///< 获取全局常量列表
|
||||
void enterNewScope(); ///< 进入新的作用域
|
||||
@@ -1593,9 +1501,6 @@ class SymbolTable {
|
||||
bool isInGlobalScope() const; ///< 是否位于全局作用域
|
||||
void enterGlobalScope(); ///< 进入全局作用域
|
||||
bool isCurNodeNull() { return curNode == nullptr; }
|
||||
|
||||
/// 清理符号表中的所有内容
|
||||
void cleanup();
|
||||
};
|
||||
|
||||
//! IR unit for representing a SysY compile unit
|
||||
@@ -1624,12 +1529,13 @@ class Module {
|
||||
return result.first->second.get();
|
||||
} ///< 创建外部函数
|
||||
///< 变量创建伴随着符号表的更新
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const ValueCounter &init = {}) {
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const std::vector<Value *> &dims = {},
|
||||
const ValueCounter &init = {}) {
|
||||
bool isFinished = variableTable.isCurNodeNull();
|
||||
if (isFinished) {
|
||||
variableTable.enterGlobalScope();
|
||||
}
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, init));
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, dims, init));
|
||||
if (isFinished) {
|
||||
variableTable.leaveScope();
|
||||
}
|
||||
@@ -1638,8 +1544,9 @@ class Module {
|
||||
}
|
||||
return dynamic_cast<GlobalValue *>(result);
|
||||
} ///< 创建全局变量
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init));
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {}) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init, dims));
|
||||
if (result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
@@ -1648,12 +1555,6 @@ class Module {
|
||||
void addVariable(const std::string &name, AllocaInst *variable) {
|
||||
variableTable.addVariable(name, variable);
|
||||
} ///< 添加变量
|
||||
void addVariableDirectly(const std::string &name, AllocaInst *variable) {
|
||||
variableTable.addVariableDirectly(name, variable);
|
||||
} ///< 直接添加变量到当前作用域,不重命名
|
||||
void registerParameterName(const std::string &name) {
|
||||
variableTable.registerParameterName(name);
|
||||
} ///< 注册函数参数名字,避免alloca重名
|
||||
Value* getVariable(const std::string &name) {
|
||||
return variableTable.getVariable(name);
|
||||
} ///< 根据名字name和当前作用域获取变量
|
||||
@@ -1666,7 +1567,7 @@ class Module {
|
||||
} ///< 获取函数
|
||||
Function* getExternalFunction(const std::string &name) const {
|
||||
auto result = externalFunctions.find(name);
|
||||
if (result == externalFunctions.end()) {
|
||||
if (result == functions.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
return result->second.get();
|
||||
@@ -1686,11 +1587,6 @@ class Module {
|
||||
void leaveScope() { variableTable.leaveScope(); } ///< 离开作用域
|
||||
|
||||
bool isInGlobalArea() const { return variableTable.isInGlobalScope(); } ///< 是否位于全局作用域
|
||||
|
||||
/// 清理模块中的所有对象,包括函数、基本块、指令等
|
||||
void cleanup();
|
||||
|
||||
void print(std::ostream& os) const;
|
||||
};
|
||||
|
||||
/*!
|
||||
|
||||
@@ -217,12 +217,6 @@ class IRBuilder {
|
||||
BinaryInst * createOrInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kOr, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建按位或指令
|
||||
BinaryInst * createSRAInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kSRA, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建算术右移指令
|
||||
BinaryInst * createMulhInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kMulh, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建高位乘法指令
|
||||
CallInst * createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty() && callee->getReturnType() != Type::getVoidType()) {
|
||||
@@ -245,30 +239,31 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建return指令
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock) {
|
||||
auto inst = new UncondBrInst(thenBlock, block);
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock, const std::vector<Value *> &args) {
|
||||
auto inst = new UncondBrInst(thenBlock, args, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建无条件指令
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, block);
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, thenArgs, elseArgs, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建条件跳转指令
|
||||
UnreachableInst * createUnreachableInst(const std::string &name = "") {
|
||||
auto inst = new UnreachableInst(name, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建不可达指令
|
||||
AllocaInst * createAllocaInst(Type *type, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, block, name);
|
||||
AllocaInst * createAllocaInst(Type *type, const std::vector<Value *> &dims = {}, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建分配指令
|
||||
AllocaInst * createAllocaInstWithoutInsert(Type *type, const std::vector<Value *> &dims = {}, BasicBlock *parent = nullptr,
|
||||
const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, parent, name);
|
||||
assert(inst);
|
||||
return inst;
|
||||
} ///< 创建不插入指令列表的分配指令[仅用于phi指令]
|
||||
LoadInst * createLoadInst(Value *pointer, const std::vector<Value *> &indices = {}, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty()) {
|
||||
@@ -280,7 +275,7 @@ class IRBuilder {
|
||||
newName = name;
|
||||
}
|
||||
|
||||
auto inst = new LoadInst(pointer, block, newName);
|
||||
auto inst = new LoadInst(pointer, indices, block, newName);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
@@ -291,8 +286,9 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建memset指令
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, block, name);
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices = {},
|
||||
const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, indices, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
@@ -312,6 +308,24 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(block->begin(), inst);
|
||||
return inst;
|
||||
} ///< 创建Phi指令
|
||||
// GetElementPtrInst* createGetElementPtrInst(Value *basePointer,
|
||||
// const std::vector<Value *> &indices = {},
|
||||
// const std::string &name = "") {
|
||||
// std::string newName;
|
||||
// if (name.empty()) {
|
||||
// std::stringstream ss;
|
||||
// ss << tmpIndex;
|
||||
// newName = ss.str();
|
||||
// tmpIndex++;
|
||||
// } else {
|
||||
// newName = name;
|
||||
// }
|
||||
|
||||
// auto inst = new GetElementPtrInst(basePointer, indices, block, newName);
|
||||
// assert(inst);
|
||||
// block->getInstructions().emplace(position, inst);
|
||||
// return inst;
|
||||
// }
|
||||
/**
|
||||
* @brief 根据 LLVM 设计模式创建 GEP 指令。
|
||||
* 它会自动推断返回类型,无需手动指定。
|
||||
@@ -350,31 +364,38 @@ class IRBuilder {
|
||||
Type *currentWalkType = pointerType->as<PointerType>()->getBaseType();
|
||||
|
||||
// 遍历所有索引来深入类型层次结构。
|
||||
// 重要:第一个索引总是用于"解引用"指针,后续索引才用于数组/结构体的索引
|
||||
// `indices` 向量包含了所有 GEP 索引,包括由 `visitLValue` 等函数添加的初始 `0` 索引。
|
||||
for (int i = 0; i < indices.size(); ++i) {
|
||||
if (i == 0) {
|
||||
// 第一个索引:总是用于"解引用"基指针,不改变currentWalkType
|
||||
// 例如:对于 `[4 x i32]* ptr, i32 0`,第一个0只是说"访问ptr指向的对象"
|
||||
// currentWalkType 保持为 `[4 x i32]`
|
||||
continue;
|
||||
if (currentWalkType->isArray()) {
|
||||
// 情况一:当前遍历类型是 `ArrayType`。
|
||||
// 索引用于选择数组元素,`currentWalkType` 更新为数组的元素类型。
|
||||
currentWalkType = currentWalkType->as<ArrayType>()->getElementType();
|
||||
} else if (currentWalkType->isPointer()) {
|
||||
// 情况二:当前遍历类型是 `PointerType`。
|
||||
// 这意味着我们正在通过一个指针来访问其指向的内存。
|
||||
// 索引用于选择该指针所指向的“数组”的元素。
|
||||
// `currentWalkType` 更新为该指针所指向的基础类型。
|
||||
// 例如:如果 `currentWalkType` 是 `i32*`,它将变为 `i32`。
|
||||
// 如果 `currentWalkType` 是 `[10 x i32]*`,它将变为 `[10 x i32]`。
|
||||
currentWalkType = currentWalkType->as<PointerType>()->getBaseType();
|
||||
} else {
|
||||
// 后续索引:用于实际的数组/结构体索引
|
||||
if (currentWalkType->isArray()) {
|
||||
// 数组索引:选择数组中的元素
|
||||
currentWalkType = currentWalkType->as<ArrayType>()->getElementType();
|
||||
} else if (currentWalkType->isPointer()) {
|
||||
// 指针索引:解引用指针并继续
|
||||
currentWalkType = currentWalkType->as<PointerType>()->getBaseType();
|
||||
} else {
|
||||
// 标量类型:不能进一步索引
|
||||
if (i < indices.size() - 1) {
|
||||
assert(false && "Invalid GEP indexing: attempting to index into a non-aggregate/non-pointer type with further indices.");
|
||||
return nullptr;
|
||||
}
|
||||
// 情况三:当前遍历类型是标量类型 (例如 `i32`, `float` 等非聚合、非指针类型)。
|
||||
//
|
||||
// 如果 `currentWalkType` 是标量,并且当前索引 `i` **不是** `indices` 向量中的最后一个索引,
|
||||
// 这意味着尝试对一个标量类型进行进一步的结构性索引,这是**无效的**。
|
||||
// 例如:`int x; x[0];` 对应的 GEP 链中,`x` 的类型是 `i32`,再加 `[0]` 索引就是错误。
|
||||
//
|
||||
// 如果 `currentWalkType` 是标量,且这是**最后一个索引** (`i == indices.size() - 1`),
|
||||
// 那么 GEP 是合法的,它只是计算一个偏移地址,最终的类型就是这个标量类型。
|
||||
// 此时 `currentWalkType` 保持不变,循环结束。
|
||||
if (i < indices.size() - 1) {
|
||||
assert(false && "Invalid GEP indexing: attempting to index into a non-aggregate/non-pointer type with further indices.");
|
||||
return nullptr; // 返回空指针表示类型推断失败
|
||||
}
|
||||
// 如果是最后一个索引,且当前类型是标量,则类型保持不变,这是合法的。
|
||||
// 循环会自然结束,返回正确的 `currentWalkType`。
|
||||
}
|
||||
}
|
||||
|
||||
// 所有索引处理完毕后,`currentWalkType` 就是 GEP 指令最终计算出的地址所指向的元素的类型。
|
||||
return currentWalkType;
|
||||
}
|
||||
|
||||
@@ -6,82 +6,30 @@
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 支配树分析结果类
|
||||
// 支配树分析结果类 (保持不变)
|
||||
class DominatorTree : public AnalysisResultBase {
|
||||
public:
|
||||
DominatorTree(Function* F);
|
||||
// 获取指定基本块的所有支配者
|
||||
const std::set<BasicBlock*>* getDominators(BasicBlock* BB) const;
|
||||
// 获取指定基本块的即时支配者 (Immediate Dominator)
|
||||
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
|
||||
// 获取指定基本块的支配边界 (Dominance Frontier)
|
||||
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
|
||||
// 获取指定基本块在支配树中的子节点
|
||||
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
|
||||
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
|
||||
const std::set<BasicBlock*>* getDominatorTreeChildren(BasicBlock* BB) const;
|
||||
// 额外的 Getter:获取所有支配者、即时支配者和支配边界的完整映射(可选,主要用于调试或特定场景)
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominatorsMap() const { return Dominators; }
|
||||
const std::map<BasicBlock*, BasicBlock*>& getIDomsMap() const { return IDoms; }
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominanceFrontiersMap() const { return DominanceFrontiers; }
|
||||
|
||||
// 计算所有基本块的支配者集合
|
||||
void computeDominators(Function* F);
|
||||
// 计算所有基本块的即时支配者(内部使用 Lengauer-Tarjan 算法)
|
||||
void computeIDoms(Function* F);
|
||||
// 计算所有基本块的支配边界
|
||||
void computeIDoms(Function* F);
|
||||
void computeDominanceFrontiers(Function* F);
|
||||
// 计算支配树的结构(即每个节点的直接子节点)
|
||||
void computeDominatorTreeChildren(Function* F);
|
||||
private:
|
||||
// 与该支配树关联的函数
|
||||
Function* AssociatedFunction;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators; // 每个基本块的支配者集合
|
||||
std::map<BasicBlock*, BasicBlock*> IDoms; // 每个基本块的即时支配者
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers; // 每个基本块的支配边界
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominatorTreeChildren; // 支配树中每个基本块的子节点
|
||||
|
||||
// ==========================================================
|
||||
// Lengauer-Tarjan 算法内部所需的数据结构和辅助函数
|
||||
// 这些成员是私有的,以封装 LT 算法的复杂性并避免命名空间污染
|
||||
// ==========================================================
|
||||
|
||||
// DFS 遍历相关:
|
||||
std::map<BasicBlock*, int> dfnum_map; // 存储每个基本块的 DFS 编号
|
||||
std::vector<BasicBlock*> vertex_vec; // 通过 DFS 编号反向查找对应的基本块指针
|
||||
std::map<BasicBlock*, BasicBlock*> parent_map; // 存储 DFS 树中每个基本块的父节点
|
||||
int df_counter; // DFS 计数器,也代表 DFS 遍历的总节点数 (N)
|
||||
|
||||
// 半支配者 (Semi-dominator) 相关:
|
||||
std::map<BasicBlock*, BasicBlock*> sdom_map; // 存储每个基本块的半支配者
|
||||
std::map<BasicBlock*, BasicBlock*> idom_map; // 存储每个基本块的即时支配者 (IDom)
|
||||
std::map<BasicBlock*, std::vector<BasicBlock*>> bucket_map; // 桶结构,用于存储具有相同半支配者的节点,以延迟 IDom 计算
|
||||
|
||||
// 并查集 (Union-Find) 相关(用于 evalAndCompress 函数):
|
||||
std::map<BasicBlock*, BasicBlock*> ancestor_map; // 并查集中的父节点(用于路径压缩)
|
||||
std::map<BasicBlock*, BasicBlock*> label_map; // 并查集中,每个集合的代表节点(或其路径上 sdom 最小的节点)
|
||||
|
||||
// ==========================================================
|
||||
// 辅助计算函数 (私有)
|
||||
// ==========================================================
|
||||
|
||||
// 计算基本块的逆后序遍历 (Reverse Post Order, RPO) 顺序
|
||||
// RPO 用于优化支配者计算和 LT 算法的效率
|
||||
std::vector<BasicBlock*> computeReversePostOrder(Function* F);
|
||||
|
||||
// Lengauer-Tarjan 算法特定的辅助 DFS 函数
|
||||
// 用于初始化 dfnum_map, vertex_vec, parent_map
|
||||
void dfs_lt_helper(BasicBlock* u);
|
||||
|
||||
// 结合了并查集的 Find 操作和 LT 算法的 Eval 操作
|
||||
// 用于在路径压缩时更新 label,找到路径上 sdom 最小的节点
|
||||
BasicBlock* evalAndCompress_lt_helper(BasicBlock* i);
|
||||
|
||||
// 并查集的 Link 操作
|
||||
// 将 v_child 挂载到 u_parent 的并查集树下
|
||||
void link_lt_helper(BasicBlock* u_parent, BasicBlock* v_child);
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators;
|
||||
std::map<BasicBlock*, BasicBlock*> IDoms;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominatorTreeChildren;
|
||||
};
|
||||
|
||||
|
||||
|
||||
@@ -1,20 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include <queue>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class BuildCFG : public OptimizationPass {
|
||||
public:
|
||||
static void *ID;
|
||||
BuildCFG() : OptimizationPass("BuildCFG", Granularity::Function) {}
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
14
src/include/midend/Pass/Optimize/ConstPropagation.h
Normal file
14
src/include/midend/Pass/Optimize/ConstPropagation.h
Normal file
@@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class ConstPropagation : public OptimizationPass {
|
||||
public:
|
||||
ConstPropagation() : OptimizationPass("ConstPropagation", Granularity::Function) {}
|
||||
bool runOnFunction(Function *F, AnalysisManager& AM) override;
|
||||
static char ID;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,24 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "../Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class LargeArrayToGlobalPass : public OptimizationPass {
|
||||
public:
|
||||
static void *ID;
|
||||
|
||||
LargeArrayToGlobalPass() : OptimizationPass("LargeArrayToGlobal", Granularity::Module) {}
|
||||
|
||||
bool runOnModule(Module *M, AnalysisManager &AM) override;
|
||||
void *getPassID() const override {
|
||||
return &ID;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned calculateTypeSize(Type *type);
|
||||
void convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M);
|
||||
std::string generateUniqueGlobalName(AllocaInst *alloca, Function *F);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@@ -75,7 +75,11 @@ private:
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
|
||||
void renameVariables(BasicBlock* currentBB);
|
||||
// alloca: 当前正在处理的 AllocaInst
|
||||
// currentBB: 当前正在遍历的基本块
|
||||
// dt: 支配树分析结果
|
||||
// valueStack: 存储当前 AllocaInst 在当前路径上可见的 SSA 值栈
|
||||
void renameVariables(AllocaInst* alloca, BasicBlock* currentBB);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段4: 清理
|
||||
|
||||
@@ -1,139 +1,196 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <variant>
|
||||
#include <functional>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 定义三值格 (Three-valued Lattice) 的状态
|
||||
enum class LatticeVal {
|
||||
Top, // ⊤ (未知 / 未初始化)
|
||||
Constant, // c (常量)
|
||||
Bottom // ⊥ (不确定 / 变化 / 未定义)
|
||||
// 稀疏条件常量传播类
|
||||
// Sparse Conditional Constant Propagation
|
||||
/*
|
||||
伪代码
|
||||
function SCCP_Optimization(Module):
|
||||
for each Function in Module:
|
||||
changed = true
|
||||
while changed:
|
||||
changed = false
|
||||
// 阶段1: 常量传播与折叠
|
||||
changed |= PropagateConstants(Function)
|
||||
// 阶段2: 控制流简化
|
||||
changed |= SimplifyControlFlow(Function)
|
||||
end while
|
||||
end for
|
||||
|
||||
function PropagateConstants(Function):
|
||||
// 初始化
|
||||
executableBlocks = {entryBlock}
|
||||
valueState = map<Value, State> // 值->状态映射
|
||||
instWorkList = Queue()
|
||||
edgeWorkList = Queue()
|
||||
|
||||
// 初始化工作列表
|
||||
for each inst in entryBlock:
|
||||
instWorkList.push(inst)
|
||||
|
||||
// 迭代处理
|
||||
while !instWorkList.empty() || !edgeWorkList.empty():
|
||||
// 处理指令工作列表
|
||||
while !instWorkList.empty():
|
||||
inst = instWorkList.pop()
|
||||
// 如果指令是可执行基本块中的
|
||||
if executableBlocks.contains(inst.parent):
|
||||
ProcessInstruction(inst)
|
||||
|
||||
// 处理边工作列表
|
||||
while !edgeWorkList.empty():
|
||||
edge = edgeWorkList.pop()
|
||||
ProcessEdge(edge)
|
||||
|
||||
// 应用常量替换
|
||||
for each inst in Function:
|
||||
if valueState[inst] == CONSTANT:
|
||||
ReplaceWithConstant(inst, valueState[inst].constant)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function ProcessInstruction(Instruction inst):
|
||||
switch inst.type:
|
||||
//二元操作
|
||||
case BINARY_OP:
|
||||
lhs = GetValueState(inst.operands[0])
|
||||
rhs = GetValueState(inst.operands[1])
|
||||
if lhs == CONSTANT && rhs == CONSTANT:
|
||||
newState = ComputeConstant(inst.op, lhs.value, rhs.value)
|
||||
UpdateState(inst, newState)
|
||||
else if lhs == BOTTOM || rhs == BOTTOM:
|
||||
UpdateState(inst, BOTTOM)
|
||||
//phi
|
||||
case PHI:
|
||||
mergedState = ⊤
|
||||
for each incoming in inst.incomings:
|
||||
// 检查每个输入的状态
|
||||
if executableBlocks.contains(incoming.block):
|
||||
incomingState = GetValueState(incoming.value)
|
||||
mergedState = Meet(mergedState, incomingState)
|
||||
UpdateState(inst, mergedState)
|
||||
// 条件分支
|
||||
case COND_BRANCH:
|
||||
cond = GetValueState(inst.condition)
|
||||
if cond == CONSTANT:
|
||||
// 判断条件分支
|
||||
if cond.value == true:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
else:
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
else if cond == BOTTOM:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
|
||||
case UNCOND_BRANCH:
|
||||
AddEdgeToWorkList(inst.parent, inst.target)
|
||||
|
||||
// 其他指令处理...
|
||||
|
||||
function ProcessEdge(Edge edge):
|
||||
fromBB, toBB = edge
|
||||
if !executableBlocks.contains(toBB):
|
||||
executableBlocks.add(toBB)
|
||||
for each inst in toBB:
|
||||
if inst is PHI:
|
||||
instWorkList.push(inst)
|
||||
else:
|
||||
instWorkList.push(inst) // 非PHI指令
|
||||
|
||||
// 更新PHI节点的输入
|
||||
for each phi in toBB.phis:
|
||||
instWorkList.push(phi)
|
||||
|
||||
function SimplifyControlFlow(Function):
|
||||
changed = false
|
||||
// 标记可达基本块
|
||||
ReachableBBs = FindReachableBlocks(Function.entry)
|
||||
|
||||
// 删除不可达块
|
||||
for each bb in Function.blocks:
|
||||
if !ReachableBBs.contains(bb):
|
||||
RemoveDeadBlock(bb)
|
||||
changed = true
|
||||
|
||||
// 简化条件分支
|
||||
for each bb in Function.blocks:
|
||||
terminator = bb.terminator
|
||||
if terminator is COND_BRANCH:
|
||||
cond = GetValueState(terminator.condition)
|
||||
if cond == CONSTANT:
|
||||
SimplifyBranch(terminator, cond.value)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function RemoveDeadBlock(BasicBlock bb):
|
||||
// 1. 更新前驱块的分支指令
|
||||
for each pred in bb.predecessors:
|
||||
UpdateTerminator(pred, bb)
|
||||
|
||||
// 2. 更新后继块的PHI节点
|
||||
for each succ in bb.successors:
|
||||
RemovePhiIncoming(succ, bb)
|
||||
|
||||
// 3. 删除块内所有指令
|
||||
for each inst in bb.instructions:
|
||||
inst.remove()
|
||||
|
||||
// 4. 从函数中移除基本块
|
||||
Function.removeBlock(bb)
|
||||
|
||||
function Meet(State a, State b):
|
||||
if a == ⊤: return b
|
||||
if b == ⊤: return a
|
||||
if a == ⊥ || b == ⊥: return ⊥
|
||||
if a.value == b.value: return a
|
||||
return ⊥
|
||||
|
||||
function UpdateState(Value v, State newState):
|
||||
oldState = valueState.get(v, ⊤)
|
||||
if newState != oldState:
|
||||
valueState[v] = newState
|
||||
for each user in v.users:
|
||||
if user is Instruction:
|
||||
instWorkList.push(user)
|
||||
|
||||
*/
|
||||
|
||||
enum class LatticeValue {
|
||||
Top, // ⊤ (Unknown)
|
||||
Constant, // c (Constant)
|
||||
Bottom // ⊥ (Undefined / Varying)
|
||||
};
|
||||
// LatticeValue: 用于表示值的状态,Top表示未知,Constant表示常量,Bottom表示未定义或变化的值。
|
||||
// 这里的LatticeValue用于跟踪每个SSA值(变量、指令结果)的状态,
|
||||
// 以便在SCCP过程中进行常量传播和控制流简化。
|
||||
|
||||
// 新增枚举来区分常量的实际类型
|
||||
enum class ValueType {
|
||||
Integer,
|
||||
Float,
|
||||
Unknown // 用于 Top 和 Bottom 状态
|
||||
};
|
||||
//TODO: 下列数据结构考虑集成到类中,避免重命名问题
|
||||
static std::set<Instruction *> Worklist;
|
||||
static std::unordered_set<BasicBlock*> Executable_Blocks;
|
||||
static std::queue<std::pair<BasicBlock *, BasicBlock *> > Executable_Edges;
|
||||
static std::map<Value*, LatticeValue> valueState;
|
||||
|
||||
// 用于表示 SSA 值的具体状态(包含格值和常量值)
|
||||
struct SSAPValue {
|
||||
LatticeVal state;
|
||||
std::variant<int, float> constantVal; // 使用 std::variant 存储 int 或 float
|
||||
ValueType constant_type; // 记录常量是整数还是浮点数
|
||||
|
||||
// 默认构造函数,初始化为 Top
|
||||
SSAPValue() : state(LatticeVal::Top), constantVal(0), constant_type(ValueType::Unknown) {}
|
||||
// 构造函数,用于创建 Bottom 状态
|
||||
SSAPValue(LatticeVal s) : state(s), constantVal(0), constant_type(ValueType::Unknown) {
|
||||
assert((s == LatticeVal::Top || s == LatticeVal::Bottom) && "SSAPValue(LatticeVal) only for Top/Bottom");
|
||||
}
|
||||
// 构造函数,用于创建 int Constant 状态
|
||||
SSAPValue(int c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Integer) {}
|
||||
// 构造函数,用于创建 float Constant 状态
|
||||
SSAPValue(float c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Float) {}
|
||||
|
||||
// 比较操作符,用于判断状态是否改变
|
||||
bool operator==(const SSAPValue &other) const {
|
||||
if (state != other.state)
|
||||
return false;
|
||||
if (state == LatticeVal::Constant) {
|
||||
if (constant_type != other.constant_type) return false; // 类型必须匹配
|
||||
return constantVal == other.constantVal; // std::variant 会比较内部值
|
||||
}
|
||||
return true; // Top == Top, Bottom == Bottom
|
||||
}
|
||||
bool operator!=(const SSAPValue &other) const { return !(*this == other); }
|
||||
};
|
||||
|
||||
// SCCP 上下文类,持有每个函数运行时的状态
|
||||
class SCCPContext {
|
||||
class SCCP {
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器,用于插入指令和创建常量
|
||||
Module *pModule;
|
||||
|
||||
// 工作列表
|
||||
// 存储需要重新评估的指令
|
||||
std::queue<Instruction *> instWorkList;
|
||||
// 存储需要重新评估的控制流边 (pair: from_block, to_block)
|
||||
std::queue<std::pair<BasicBlock *, BasicBlock *>> edgeWorkList;
|
||||
public:
|
||||
SCCP(Module *pMoudle) : pModule(pMoudle) {}
|
||||
|
||||
// 格值映射:SSA Value 到其当前状态
|
||||
std::map<Value *, SSAPValue> valueState;
|
||||
// 可执行基本块集合
|
||||
std::unordered_set<BasicBlock *> executableBlocks;
|
||||
// 追踪已访问的CFG边,防止重复添加,使用 SysYIROptUtils::PairHash
|
||||
std::unordered_set<std::pair<BasicBlock*, BasicBlock*>, SysYIROptUtils::PairHash> visitedCFGEdges;
|
||||
|
||||
// 辅助函数:格操作 Meet
|
||||
SSAPValue Meet(const SSAPValue &a, const SSAPValue &b);
|
||||
// 辅助函数:获取值的当前状态,如果不存在则默认为 Top
|
||||
SSAPValue GetValueState(Value *v);
|
||||
// 辅助函数:更新值的状态,如果状态改变,将所有用户加入指令工作列表
|
||||
void UpdateState(Value *v, SSAPValue newState);
|
||||
// 辅助函数:将边加入边工作列表,并更新可执行块
|
||||
void AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB);
|
||||
// 辅助函数:标记一个块为可执行
|
||||
void MarkBlockExecutable(BasicBlock* block);
|
||||
|
||||
// 辅助函数:对二元操作进行常量折叠
|
||||
SSAPValue ComputeConstant(BinaryInst *binaryinst, SSAPValue lhsVal, SSAPValue rhsVal);
|
||||
// 辅助函数:对一元操作进行常量折叠
|
||||
SSAPValue ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal);
|
||||
|
||||
// 主要优化阶段
|
||||
// 阶段1: 常量传播与折叠
|
||||
bool PropagateConstants(Function *func);
|
||||
// 阶段2: 控制流简化
|
||||
bool SimplifyControlFlow(Function *func);
|
||||
|
||||
// 辅助函数:处理单条指令
|
||||
void run();
|
||||
bool PropagateConstants(Function *function);
|
||||
bool SimplifyControlFlow(Function *function);
|
||||
void ProcessInstruction(Instruction *inst);
|
||||
// 辅助函数:处理单条控制流边
|
||||
void ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge);
|
||||
|
||||
// 控制流简化辅助函数
|
||||
// 查找所有可达的基本块 (基于常量条件)
|
||||
std::unordered_set<BasicBlock *> FindReachableBlocks(Function *func);
|
||||
// 移除死块
|
||||
void RemoveDeadBlock(BasicBlock *bb, Function *func);
|
||||
// 简化分支(将条件分支替换为无条件分支)
|
||||
void SimplifyBranch(CondBrInst*brInst, bool condVal); // 保持 BranchInst
|
||||
// 更新前驱块的终结指令(当一个后继块被移除时)
|
||||
void UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc);
|
||||
// 移除 Phi 节点的入边(当其前驱块被移除时)
|
||||
void RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred);
|
||||
|
||||
public:
|
||||
SCCPContext(IRBuilder *builder) : builder(builder) {}
|
||||
|
||||
// 运行 SCCP 优化
|
||||
void run(Function *func, AnalysisManager &AM);
|
||||
void RemoveDeadBlock(BasicBlock *bb);
|
||||
void UpdateState(Value *v, LatticeValue newState);
|
||||
LatticeValue Meet(LatticeValue a, LatticeValue b);
|
||||
LatticeValue GetValueState(Value *v);
|
||||
};
|
||||
|
||||
// SCCP 优化遍类,继承自 OptimizationPass
|
||||
class SCCP : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器,作为 Pass 的成员,传入 Context
|
||||
|
||||
public:
|
||||
SCCP(IRBuilder *builder) : OptimizationPass("SCCP", Granularity::Function), builder(builder) {}
|
||||
static void *ID;
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
} // namespace sysy
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#include "IR.h"
|
||||
|
||||
extern int DEBUG;
|
||||
namespace sysy {
|
||||
|
||||
// 优化工具类,包含一些通用的优化方法
|
||||
@@ -11,80 +10,12 @@ namespace sysy {
|
||||
class SysYIROptUtils{
|
||||
|
||||
public:
|
||||
struct PairHash {
|
||||
template <class T1, class T2>
|
||||
std::size_t operator () (const std::pair<T1, T2>& p) const {
|
||||
auto h1 = std::hash<T1>{}(p.first);
|
||||
auto h2 = std::hash<T2>{}(p.second);
|
||||
|
||||
// 简单的组合哈希值,可以更复杂以减少冲突
|
||||
// 使用 boost::hash_combine 的简化版本
|
||||
return h1 ^ (h2 << 1);
|
||||
}
|
||||
};
|
||||
|
||||
static void RemoveUserOperandUses(User *user) {
|
||||
if (!user) {
|
||||
return;
|
||||
// 仅仅删除use关系
|
||||
static void usedelete(Instruction *instr) {
|
||||
for (auto &use : instr->getOperands()) {
|
||||
Value* val = use->getValue();
|
||||
val->removeUse(use);
|
||||
}
|
||||
|
||||
// 遍历 User 的 operands 列表。
|
||||
// 由于 operands 是 protected 成员,我们需要一个临时方法来访问它,
|
||||
// 或者在 User 类中添加一个 friend 声明。
|
||||
// 假设 User 内部有一个像 getOperands() 这样的公共方法返回 operands 的引用,
|
||||
// 或者将 SysYIROptUtils 声明为 User 的 friend。
|
||||
// 为了示例,我将假设可以直接访问 user->operands 或通过一个getter。
|
||||
// 如果无法直接访问,请在 IR.h 的 User 类中添加:
|
||||
// public: const std::vector<std::shared_ptr<Use>>& getOperands() const { return operands; }
|
||||
|
||||
// 迭代 copies of shared_ptr to avoid issues if removeUse modifies the list
|
||||
// (though remove should handle it, iterating a copy is safer or reverse iteration).
|
||||
// Since we'll clear the vector at the end, iterating forward is fine.
|
||||
for (const auto& use_ptr : user->getOperands()) { // 假设 getOperands() 可用
|
||||
if (use_ptr) {
|
||||
Value *val = use_ptr->getValue(); // 获取 Use 指向的 Value (如 AllocaInst)
|
||||
if (val) {
|
||||
val->removeUse(use_ptr); // 通知 Value 从其 uses 列表中移除此 Use 关系
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
static void usedelete(Instruction *inst) {
|
||||
assert(inst && "Instruction to delete cannot be null.");
|
||||
BasicBlock *parentBlock = inst->getParent();
|
||||
assert(parentBlock && "Instruction must have a parent BasicBlock to be deleted.");
|
||||
|
||||
// 步骤1: 处理所有使用者,将他们从使用 inst 变为使用 UndefinedValue
|
||||
// 这将清理 inst 作为 Value 时的 uses 列表
|
||||
if (!inst->getUses().empty()) {
|
||||
inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()));
|
||||
}
|
||||
|
||||
// 步骤2: 清理 inst 作为 User 时的操作数关系
|
||||
// 通知 inst 所使用的所有 Value (如 AllocaInst),移除对应的 Use 关系。
|
||||
// 这里的 inst 实际上是一个 User*,所以可以安全地向下转型。
|
||||
RemoveUserOperandUses(static_cast<User*>(inst));
|
||||
|
||||
// 步骤3: 物理删除指令
|
||||
// 这会导致 Instruction 对象的 unique_ptr 销毁,从而调用其析构函数链。
|
||||
parentBlock->removeInst(inst);
|
||||
}
|
||||
|
||||
static BasicBlock::iterator usedelete(BasicBlock::iterator inst_it) {
|
||||
Instruction *inst_to_delete = inst_it->get();
|
||||
BasicBlock *parentBlock = inst_to_delete->getParent();
|
||||
assert(parentBlock && "Instruction must have a parent BasicBlock for iterator deletion.");
|
||||
|
||||
// 步骤1: 处理所有使用者
|
||||
if (!inst_to_delete->getUses().empty()) {
|
||||
inst_to_delete->replaceAllUsesWith(UndefinedValue::get(inst_to_delete->getType()));
|
||||
}
|
||||
|
||||
// 步骤2: 清理操作数关系
|
||||
RemoveUserOperandUses(static_cast<User*>(inst_to_delete));
|
||||
|
||||
// 步骤3: 物理删除指令并返回下一个迭代器
|
||||
return parentBlock->removeInst(inst_it);
|
||||
}
|
||||
|
||||
// 判断是否是全局变量
|
||||
@@ -95,17 +26,7 @@ public:
|
||||
// 判断是否是数组
|
||||
static bool isArr(Value *val) {
|
||||
auto aval = dynamic_cast<AllocaInst *>(val);
|
||||
// 如果是 AllocaInst 且通过Type::isArray()判断为数组类型
|
||||
return aval && aval->getType()->as<PointerType>()->getBaseType()->isArray();
|
||||
}
|
||||
// 判断是否是指向数组的指针
|
||||
static bool isArrPointer(Value *val) {
|
||||
auto aval = dynamic_cast<AllocaInst *>(val);
|
||||
// 如果是 AllocaInst 且通过Type::isPointer()判断为指针;
|
||||
auto baseType = aval->getType()->as<PointerType>()->getBaseType();
|
||||
// 在sysy中,函数的数组参数会退化成指针
|
||||
// 所以当AllocaInst的basetype是PointerType时(一维数组)或者是指向ArrayType的PointerType(多位数组)时,返回true
|
||||
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
|
||||
return aval != nullptr && aval->getNumDims() != 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -279,7 +279,7 @@ private:
|
||||
IRBuilder *pBuilder;
|
||||
|
||||
public:
|
||||
PassManager() = delete;
|
||||
PassManager() = default;
|
||||
~PassManager() = default;
|
||||
|
||||
PassManager(Module *module, IRBuilder *builder) : pmodule(module) ,pBuilder(builder), analysisManager(module) {}
|
||||
|
||||
@@ -86,60 +86,7 @@ private:
|
||||
case LPAREN: case RPAREN: return 0; // Parentheses have lowest precedence for stack logic
|
||||
default: return -1; // Unknown operator
|
||||
}
|
||||
};
|
||||
|
||||
struct ExpKey {
|
||||
BinaryOp op; ///< 操作符
|
||||
Value *left; ///< 左操作数
|
||||
Value *right; ///< 右操作数
|
||||
ExpKey(BinaryOp op, Value *left, Value *right) : op(op), left(left), right(right) {}
|
||||
|
||||
bool operator<(const ExpKey &other) const {
|
||||
if (op != other.op)
|
||||
return op < other.op; ///< 比较操作符
|
||||
if (left != other.left)
|
||||
return left < other.left; ///< 比较左操作
|
||||
return right < other.right; ///< 比较右操作数
|
||||
} ///< 重载小于运算符用于比较ExpKey
|
||||
};
|
||||
|
||||
struct UnExpKey {
|
||||
BinaryOp op; ///< 一元操作符
|
||||
Value *operand; ///< 操作数
|
||||
UnExpKey(BinaryOp op, Value *operand) : op(op), operand(operand) {}
|
||||
|
||||
bool operator<(const UnExpKey &other) const {
|
||||
if (op != other.op)
|
||||
return op < other.op; ///< 比较操作符
|
||||
return operand < other.operand; ///< 比较操作数
|
||||
} ///< 重载小于运算符用于比较UnExpKey
|
||||
};
|
||||
|
||||
struct GEPKey {
|
||||
Value *basePointer;
|
||||
std::vector<Value *> indices;
|
||||
|
||||
// 为 std::map 定义比较运算符,使得 GEPKey 可以作为键
|
||||
bool operator<(const GEPKey &other) const {
|
||||
if (basePointer != other.basePointer) {
|
||||
return basePointer < other.basePointer;
|
||||
}
|
||||
// 逐个比较索引,确保顺序一致
|
||||
if (indices.size() != other.indices.size()) {
|
||||
return indices.size() < other.indices.size();
|
||||
}
|
||||
for (size_t i = 0; i < indices.size(); ++i) {
|
||||
if (indices[i] != other.indices[i]) {
|
||||
return indices[i] < other.indices[i];
|
||||
}
|
||||
}
|
||||
return false; // 如果 basePointer 和所有索引都相同,则认为相等
|
||||
}
|
||||
};
|
||||
std::map<GEPKey, Value*> availableGEPs; ///< 用于存储 GEP 的缓存
|
||||
std::map<ExpKey, Value*> availableBinaryExpressions;
|
||||
std::map<UnExpKey, Value*> availableUnaryExpressions;
|
||||
std::map<Value*, Value*> availableLoads;
|
||||
}
|
||||
|
||||
public:
|
||||
SysYIRGenerator() = default;
|
||||
@@ -220,15 +167,6 @@ public:
|
||||
Value* computeExp(SysYParser::ExpContext *ctx, Type* targetType = nullptr);
|
||||
Value* computeAddExp(SysYParser::AddExpContext *ctx, Type* targetType = nullptr);
|
||||
void compute();
|
||||
|
||||
// 参数是发生 store 操作的目标地址/变量的 Value*
|
||||
void invalidateExpressionsOnStore(Value* storedAddress);
|
||||
|
||||
// 清除因函数调用而失效的表达式缓存(保守策略)
|
||||
void invalidateExpressionsOnCall();
|
||||
|
||||
// 在进入新的基本块时清空所有表达式缓存
|
||||
void enterNewBasicBlock();
|
||||
public:
|
||||
// 获取GEP指令的地址
|
||||
Value* getGEPAddressInst(Value* basePointer, const std::vector<Value*>& indices);
|
||||
|
||||
@@ -10,9 +10,7 @@ add_library(midend_lib STATIC
|
||||
Pass/Optimize/Mem2Reg.cpp
|
||||
Pass/Optimize/Reg2Mem.cpp
|
||||
Pass/Optimize/SysYIRCFGOpt.cpp
|
||||
Pass/Optimize/SCCP.cpp
|
||||
Pass/Optimize/BuildCFG.cpp
|
||||
Pass/Optimize/LargeArrayToGlobal.cpp
|
||||
Pass/Optimize/ConstPropagation.cpp
|
||||
)
|
||||
|
||||
# 包含中端模块所需的头文件路径
|
||||
|
||||
1504
src/midend/IR.cpp
1504
src/midend/IR.cpp
File diff suppressed because it is too large
Load Diff
@@ -1,30 +1,19 @@
|
||||
#include "Dom.h"
|
||||
#include <algorithm> // for std::set_intersection, std::reverse
|
||||
#include <iostream> // for debug output
|
||||
#include <limits> // for std::numeric_limits
|
||||
#include <limits> // for std::numeric_limits
|
||||
#include <queue>
|
||||
#include <functional> // for std::function
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// ==============================================================
|
||||
// DominatorTreeAnalysisPass 的静态ID
|
||||
// ==============================================================
|
||||
// 初始化 支配树静态 ID
|
||||
void *DominatorTreeAnalysisPass::ID = (void *)&DominatorTreeAnalysisPass::ID;
|
||||
|
||||
// ==============================================================
|
||||
// DominatorTree 结果类的实现
|
||||
// ==============================================================
|
||||
|
||||
// 构造函数:初始化关联函数,但不进行计算
|
||||
DominatorTree::DominatorTree(Function *F) : AssociatedFunction(F) {
|
||||
// 构造时不需要计算,在分析遍运行里计算并填充
|
||||
// 构造时可以不计算,在分析遍运行里计算并填充
|
||||
}
|
||||
|
||||
// Getter 方法 (保持不变)
|
||||
const std::set<BasicBlock *> *DominatorTree::getDominators(BasicBlock *BB) const {
|
||||
auto it = Dominators.find(BB);
|
||||
if (it != Dominators.end()) {
|
||||
@@ -49,437 +38,164 @@ const std::set<BasicBlock *> *DominatorTree::getDominanceFrontier(BasicBlock *BB
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const std::set<BasicBlock *> *DominatorTree::getDominatorTreeChildren(BasicBlock *BB) const {
|
||||
auto it = DominatorTreeChildren.find(BB);
|
||||
if (it != DominatorTreeChildren.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// 辅助函数:打印 BasicBlock 集合 (保持不变)
|
||||
void printBBSet(const std::string &prefix, const std::set<BasicBlock *> &s) {
|
||||
if (!DEBUG)
|
||||
return;
|
||||
std::cout << prefix << "{";
|
||||
bool first = true;
|
||||
for (const auto &bb : s) {
|
||||
if (!first)
|
||||
std::cout << ", ";
|
||||
std::cout << bb->getName();
|
||||
first = false;
|
||||
}
|
||||
std::cout << "}" << std::endl;
|
||||
}
|
||||
|
||||
// 辅助函数:计算逆后序遍历 (RPO) - 保持不变
|
||||
std::vector<BasicBlock*> DominatorTree::computeReversePostOrder(Function* F) {
|
||||
std::vector<BasicBlock*> postOrder;
|
||||
std::set<BasicBlock*> visited;
|
||||
|
||||
std::function<void(BasicBlock*)> dfs_rpo =
|
||||
[&](BasicBlock* bb) {
|
||||
visited.insert(bb);
|
||||
for (BasicBlock* succ : bb->getSuccessors()) {
|
||||
if (visited.find(succ) == visited.end()) {
|
||||
dfs_rpo(succ);
|
||||
}
|
||||
}
|
||||
postOrder.push_back(bb);
|
||||
};
|
||||
|
||||
dfs_rpo(F->getEntryBlock());
|
||||
std::reverse(postOrder.begin(), postOrder.end());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "--- Computed RPO: ";
|
||||
for (BasicBlock* bb : postOrder) {
|
||||
std::cout << bb->getName() << " ";
|
||||
}
|
||||
std::cout << "---" << std::endl;
|
||||
const std::set<BasicBlock*>* DominatorTree::getDominatorTreeChildren(BasicBlock* BB) const {
|
||||
auto it = DominatorTreeChildren.find(BB);
|
||||
if (it != DominatorTreeChildren.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
return postOrder;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// computeDominators 方法 (保持不变,因为它它是独立于IDom算法的)
|
||||
void DominatorTree::computeDominators(Function *F) {
|
||||
if (DEBUG)
|
||||
std::cout << "--- Computing Dominators ---" << std::endl;
|
||||
|
||||
// 经典的迭代算法计算支配者集合
|
||||
// TODO: 可以替换为更高效的算法,如 Lengauer-Tarjan 算法
|
||||
BasicBlock *entryBlock = F->getEntryBlock();
|
||||
std::vector<BasicBlock*> bbs_rpo = computeReversePostOrder(F);
|
||||
|
||||
for (BasicBlock *bb : bbs_rpo) {
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock) {
|
||||
Dominators[bb].clear();
|
||||
Dominators[bb].insert(bb);
|
||||
if (DEBUG) std::cout << "Init Dominators[" << bb->getName() << "]: {" << bb->getName() << "}" << std::endl;
|
||||
} else {
|
||||
Dominators[bb].clear();
|
||||
for (BasicBlock *all_bb : bbs_rpo) {
|
||||
Dominators[bb].insert(all_bb);
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << "Init Dominators[" << bb->getName() << "]: ";
|
||||
printBBSet("", Dominators[bb]);
|
||||
for (const auto &all_bb_ptr : F->getBasicBlocks()) {
|
||||
Dominators[bb].insert(all_bb_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool changed = true;
|
||||
int iteration = 0;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
iteration++;
|
||||
if (DEBUG) std::cout << "Iteration " << iteration << std::endl;
|
||||
|
||||
for (BasicBlock *bb : bbs_rpo) {
|
||||
if (bb == entryBlock) continue;
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock)
|
||||
continue;
|
||||
|
||||
std::set<BasicBlock *> newDom;
|
||||
bool firstPredProcessed = false;
|
||||
|
||||
bool firstPred = true;
|
||||
for (BasicBlock *pred : bb->getPredecessors()) {
|
||||
if(DEBUG){
|
||||
std::cout << " Processing predecessor: " << pred->getName() << std::endl;
|
||||
}
|
||||
if (!firstPredProcessed) {
|
||||
newDom = Dominators[pred];
|
||||
firstPredProcessed = true;
|
||||
if (Dominators.count(pred)) {
|
||||
if (firstPred) {
|
||||
newDom = Dominators[pred];
|
||||
firstPred = false;
|
||||
} else {
|
||||
std::set<BasicBlock *> intersection;
|
||||
std::set_intersection(newDom.begin(), newDom.end(), Dominators[pred].begin(), Dominators[pred].end(),
|
||||
std::inserter(intersection, intersection.begin()));
|
||||
newDom = intersection;
|
||||
std::set<BasicBlock *> intersection;
|
||||
std::set_intersection(newDom.begin(), newDom.end(), Dominators[pred].begin(), Dominators[pred].end(),
|
||||
std::inserter(intersection, intersection.begin()));
|
||||
newDom = intersection;
|
||||
}
|
||||
}
|
||||
}
|
||||
newDom.insert(bb);
|
||||
|
||||
if (newDom != Dominators[bb]) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Dominators[" << bb->getName() << "] changed from ";
|
||||
printBBSet("", Dominators[bb]);
|
||||
std::cout << " to ";
|
||||
printBBSet("", newDom);
|
||||
}
|
||||
Dominators[bb] = newDom;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (DEBUG)
|
||||
std::cout << "--- Dominators Computation Finished ---" << std::endl;
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// Lengauer-Tarjan 算法辅助数据结构和函数 (私有成员)
|
||||
// ==============================================================
|
||||
|
||||
// DFS 遍历,填充 dfnum_map, vertex_vec, parent_map
|
||||
// 对应用户代码的 dfs 函数
|
||||
void DominatorTree::dfs_lt_helper(BasicBlock* u) {
|
||||
dfnum_map[u] = df_counter;
|
||||
if (df_counter >= vertex_vec.size()) { // 动态调整大小
|
||||
vertex_vec.resize(df_counter + 1);
|
||||
}
|
||||
vertex_vec[df_counter] = u;
|
||||
if (DEBUG) std::cout << " DFS: Visiting " << u->getName() << ", dfnum = " << df_counter << std::endl;
|
||||
df_counter++;
|
||||
|
||||
for (BasicBlock* v : u->getSuccessors()) {
|
||||
if (dfnum_map.find(v) == dfnum_map.end()) { // 如果 v 未访问过
|
||||
parent_map[v] = u;
|
||||
if (DEBUG) std::cout << " DFS: Setting parent[" << v->getName() << "] = " << u->getName() << std::endl;
|
||||
dfs_lt_helper(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 并查集:找到集合的代表,并进行路径压缩
|
||||
// 同时更新 label,确保 label[i] 总是指向其祖先链中 sdom_map 最小的节点
|
||||
// 对应用户代码的 find 函数,也包含了 eval 的逻辑
|
||||
BasicBlock* DominatorTree::evalAndCompress_lt_helper(BasicBlock* i) {
|
||||
if (DEBUG) std::cout << " Eval: Processing " << i->getName() << std::endl;
|
||||
// 如果 i 是根 (ancestor_map[i] == nullptr)
|
||||
if (ancestor_map.find(i) == ancestor_map.end() || ancestor_map[i] == nullptr) {
|
||||
if (DEBUG) std::cout << " Eval: " << i->getName() << " is root, returning itself." << std::endl;
|
||||
return i; // 根节点自身就是路径上sdom最小的,因为它没有祖先
|
||||
}
|
||||
|
||||
// 如果 i 的祖先不是根,则递归查找并进行路径压缩
|
||||
BasicBlock* root_ancestor = evalAndCompress_lt_helper(ancestor_map[i]);
|
||||
|
||||
// 路径压缩时,根据 sdom_map 比较并更新 label_map
|
||||
// 确保 label_map[i] 存储的是 i 到 root_ancestor 路径上 sdom_map 最小的节点
|
||||
// 注意:这里的 ancestor_map[i] 已经被递归调用压缩过一次了,所以是root_ancestor的旧路径
|
||||
// 应该比较的是 label_map[ancestor_map[i]] 和 label_map[i]
|
||||
if (sdom_map.count(label_map[ancestor_map[i]]) && // 确保 label_map[ancestor_map[i]] 存在 sdom
|
||||
sdom_map.count(label_map[i]) && // 确保 label_map[i] 存在 sdom
|
||||
dfnum_map[sdom_map[label_map[ancestor_map[i]]]] < dfnum_map[sdom_map[label_map[i]]]) {
|
||||
if (DEBUG) std::cout << " Eval: Updating label for " << i->getName() << " from "
|
||||
<< label_map[i]->getName() << " to " << label_map[ancestor_map[i]]->getName() << std::endl;
|
||||
label_map[i] = label_map[ancestor_map[i]];
|
||||
}
|
||||
|
||||
ancestor_map[i] = root_ancestor; // 执行路径压缩:将 i 直接指向其所属集合的根
|
||||
if (DEBUG) std::cout << " Eval: Path compression for " << i->getName() << ", new ancestor = "
|
||||
<< (root_ancestor ? root_ancestor->getName() : "nullptr") << std::endl;
|
||||
|
||||
return label_map[i]; // <-- **将这里改为返回 label_map[i]**
|
||||
}
|
||||
|
||||
// Link 函数:将 v 加入 u 的 DFS 树子树中 (实际上是并查集操作)
|
||||
// 对应用户代码的 fa[u] = fth[u];
|
||||
void DominatorTree::link_lt_helper(BasicBlock* u_parent, BasicBlock* v_child) {
|
||||
ancestor_map[v_child] = u_parent; // 设置并查集父节点
|
||||
label_map[v_child] = v_child; // 初始化 label 为自身
|
||||
if (DEBUG) std::cout << " Link: " << v_child->getName() << " linked to " << u_parent->getName() << std::endl;
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// Lengauer-Tarjan 算法实现 computeIDoms
|
||||
// ==============================================================
|
||||
void DominatorTree::computeIDoms(Function *F) {
|
||||
if (DEBUG) std::cout << "--- Computing Immediate Dominators (IDoms) using Lengauer-Tarjan ---" << std::endl;
|
||||
// 采用与之前类似的简化实现。TODO:Lengauer-Tarjan等算法。
|
||||
BasicBlock *entryBlock = F->getEntryBlock();
|
||||
IDoms[entryBlock] = nullptr;
|
||||
|
||||
BasicBlock *entryBlock = F->getEntryBlock();
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock)
|
||||
continue;
|
||||
|
||||
// 1. 初始化所有 LT 相关的数据结构
|
||||
dfnum_map.clear();
|
||||
vertex_vec.clear();
|
||||
parent_map.clear();
|
||||
sdom_map.clear();
|
||||
idom_map.clear();
|
||||
bucket_map.clear();
|
||||
ancestor_map.clear();
|
||||
label_map.clear();
|
||||
df_counter = 0; // DFS 计数器从 0 开始
|
||||
BasicBlock *currentIDom = nullptr;
|
||||
const std::set<BasicBlock *> *domsOfBB = getDominators(bb);
|
||||
if (!domsOfBB)
|
||||
continue;
|
||||
|
||||
// 预分配 vertex_vec 的大小,避免频繁resize
|
||||
vertex_vec.resize(F->getBasicBlocks().size() + 1);
|
||||
// 在 DFS 遍历之前,先为所有基本块初始化 sdom 和 label
|
||||
// 这是 Lengauer-Tarjan 算法的要求,确保所有节点在 Phase 2 开始前都在 map 中
|
||||
for (auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock* bb = bb_ptr.get();
|
||||
sdom_map[bb] = bb; // sdom(bb) 初始化为 bb 自身
|
||||
label_map[bb] = bb; // label(bb) 初始化为 bb 自身 (用于 Union-Find 的路径压缩)
|
||||
for (BasicBlock *D : *domsOfBB) {
|
||||
if (D == bb)
|
||||
continue;
|
||||
|
||||
bool isCandidateIDom = true;
|
||||
for (BasicBlock *candidate : *domsOfBB) {
|
||||
if (candidate == bb || candidate == D)
|
||||
continue;
|
||||
const std::set<BasicBlock *> *domsOfCandidate = getDominators(candidate);
|
||||
if (domsOfCandidate && domsOfCandidate->count(D) == 0 && domsOfBB->count(candidate)) {
|
||||
isCandidateIDom = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (isCandidateIDom) {
|
||||
currentIDom = D;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 确保入口块也被正确初始化(如果它不在 F->getBasicBlocks() 的正常迭代中)
|
||||
sdom_map[entryBlock] = entryBlock;
|
||||
label_map[entryBlock] = entryBlock;
|
||||
// Phase 1: DFS 遍历并预处理
|
||||
// 对应用户代码的 dfs(st)
|
||||
dfs_lt_helper(entryBlock);
|
||||
idom_map[entryBlock] = nullptr; // 入口块没有即时支配者
|
||||
if (DEBUG) std::cout << " IDom[" << entryBlock->getName() << "] = nullptr" << std::endl;
|
||||
|
||||
if (DEBUG) std::cout << " Sdom[" << entryBlock->getName() << "] = " << entryBlock->getName() << std::endl;
|
||||
|
||||
// 初始化并查集的祖先和 label
|
||||
for (auto const& [bb_key, dfn_val] : dfnum_map) {
|
||||
ancestor_map[bb_key] = nullptr; // 初始为独立集合的根
|
||||
label_map[bb_key] = bb_key; // 初始 label 为自身
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " --- DFS Phase Complete ---" << std::endl;
|
||||
std::cout << " dfnum_map:" << std::endl;
|
||||
for (auto const& [bb, dfn] : dfnum_map) {
|
||||
std::cout << " " << bb->getName() << " -> " << dfn << std::endl;
|
||||
}
|
||||
std::cout << " vertex_vec (by dfnum):" << std::endl;
|
||||
for (size_t k = 0; k < df_counter; ++k) {
|
||||
if (vertex_vec[k]) std::cout << " [" << k << "] -> " << vertex_vec[k]->getName() << std::endl;
|
||||
}
|
||||
std::cout << " parent_map:" << std::endl;
|
||||
for (auto const& [child, parent] : parent_map) {
|
||||
std::cout << " " << child->getName() << " -> " << (parent ? parent->getName() : "nullptr") << std::endl;
|
||||
}
|
||||
std::cout << " ------------------------" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
// Phase 2: 计算半支配者 (sdom)
|
||||
// 对应用户代码的 for (int i = dfc; i >= 2; --i) 循环的上半部分
|
||||
// 按照 DFS 编号递减的顺序遍历所有节点 (除了 entryBlock,它的 DFS 编号是 0)
|
||||
if (DEBUG) std::cout << "--- Phase 2: Computing Semi-Dominators (sdom) ---" << std::endl;
|
||||
for (int i = df_counter - 1; i >= 1; --i) { // 从 DFS 编号最大的节点开始,到 1
|
||||
BasicBlock* w = vertex_vec[i]; // 当前处理的节点
|
||||
if (DEBUG) std::cout << " Processing node w: " << w->getName() << " (dfnum=" << i << ")" << std::endl;
|
||||
|
||||
|
||||
// 对于 w 的每个前驱 v
|
||||
for (BasicBlock* v : w->getPredecessors()) {
|
||||
if (DEBUG) std::cout << " Considering predecessor v: " << v->getName() << std::endl;
|
||||
// 如果前驱 v 未被 DFS 访问过 (即不在 dfnum_map 中),则跳过
|
||||
if (dfnum_map.find(v) == dfnum_map.end()) {
|
||||
if (DEBUG) std::cout << " Predecessor " << v->getName() << " not in DFS tree, skipping." << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 调用 evalAndCompress 来找到 v 在其 DFS 树祖先链上具有最小 sdom 的节点
|
||||
BasicBlock* u_with_min_sdom_on_path = evalAndCompress_lt_helper(v);
|
||||
if (DEBUG) std::cout << " Eval(" << v->getName() << ") returned "
|
||||
<< u_with_min_sdom_on_path->getName() << std::endl;
|
||||
if (DEBUG && sdom_map.count(u_with_min_sdom_on_path) && sdom_map.count(w)) {
|
||||
std::cout << " Comparing sdom: dfnum[" << sdom_map[u_with_min_sdom_on_path]->getName() << "] (" << dfnum_map[sdom_map[u_with_min_sdom_on_path]]
|
||||
<< ") vs dfnum[" << sdom_map[w]->getName() << "] (" << dfnum_map[sdom_map[w]] << ")" << std::endl;
|
||||
}
|
||||
// 比较 sdom(u) 和 sdom(w)
|
||||
if (sdom_map.count(u_with_min_sdom_on_path) && sdom_map.count(w) &&
|
||||
dfnum_map[sdom_map[u_with_min_sdom_on_path]] < dfnum_map[sdom_map[w]]) {
|
||||
if (DEBUG) std::cout << " Updating sdom[" << w->getName() << "] from "
|
||||
<< sdom_map[w]->getName() << " to "
|
||||
<< sdom_map[u_with_min_sdom_on_path]->getName() << std::endl;
|
||||
sdom_map[w] = sdom_map[u_with_min_sdom_on_path]; // 更新 sdom(w)
|
||||
if (DEBUG) std::cout << " Sdom update applied. New sdom[" << w->getName() << "] = " << sdom_map[w]->getName() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 将 w 加入 sdom(w) 对应的桶中
|
||||
bucket_map[sdom_map[w]].push_back(w);
|
||||
if (DEBUG) std::cout << " Adding " << w->getName() << " to bucket of sdom(" << w->getName() << "): "
|
||||
<< sdom_map[w]->getName() << std::endl;
|
||||
|
||||
// 将 w 的父节点加入并查集 (link 操作)
|
||||
if (parent_map.count(w) && parent_map[w] != nullptr) {
|
||||
link_lt_helper(parent_map[w], w);
|
||||
}
|
||||
|
||||
// Phase 3-part 1: 处理 parent[w] 的桶中所有节点,确定部分 idom
|
||||
if (parent_map.count(w) && parent_map[w] != nullptr) {
|
||||
BasicBlock* p = parent_map[w]; // p 是 w 的父节点
|
||||
if (DEBUG) std::cout << " Processing bucket for parent " << p->getName() << std::endl;
|
||||
|
||||
// 注意:这里需要复制桶的内容,因为原始桶在循环中会被clear
|
||||
std::vector<BasicBlock*> nodes_in_p_bucket_copy = bucket_map[p];
|
||||
for (BasicBlock* y : nodes_in_p_bucket_copy) {
|
||||
if (DEBUG) std::cout << " Processing node y from bucket: " << y->getName() << std::endl;
|
||||
// 找到 y 在其 DFS 树祖先链上具有最小 sdom 的节点
|
||||
BasicBlock* u = evalAndCompress_lt_helper(y);
|
||||
if (DEBUG) std::cout << " Eval(" << y->getName() << ") returned " << u->getName() << std::endl;
|
||||
|
||||
// 确定 idom(y)
|
||||
// if sdom(eval(y)) == sdom(parent(w)), then idom(y) = parent(w)
|
||||
// else idom(y) = eval(y)
|
||||
if (sdom_map.count(u) && sdom_map.count(p) &&
|
||||
dfnum_map[sdom_map[u]] < dfnum_map[sdom_map[p]]) {
|
||||
idom_map[y] = u; // 确定的 idom
|
||||
if (DEBUG) std::cout << " IDom[" << y->getName() << "] set to " << u->getName() << std::endl;
|
||||
} else {
|
||||
idom_map[y] = p; // p 是 y 的 idom
|
||||
if (DEBUG) std::cout << " IDom[" << y->getName() << "] set to " << p->getName() << std::endl;
|
||||
}
|
||||
}
|
||||
bucket_map[p].clear(); // 清空桶,防止重复处理
|
||||
if (DEBUG) std::cout << " Cleared bucket for parent " << p->getName() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Phase 3-part 2: 最终确定 idom (处理那些 idom != sdom 的节点)
|
||||
if (DEBUG) std::cout << "--- Phase 3: Finalizing Immediate Dominators (idom) ---" << std::endl;
|
||||
for (int i = 1; i < df_counter; ++i) { // 从 DFS 编号最小的节点 (除了 entryBlock) 开始
|
||||
BasicBlock* w = vertex_vec[i];
|
||||
if (DEBUG) std::cout << " Finalizing node w: " << w->getName() << std::endl;
|
||||
if (idom_map.count(w) && sdom_map.count(w) && idom_map[w] != sdom_map[w]) {
|
||||
// idom[w] 的 idom 是其真正的 idom
|
||||
if (DEBUG) std::cout << " idom[" << w->getName() << "] (" << idom_map[w]->getName()
|
||||
<< ") != sdom[" << w->getName() << "] (" << sdom_map[w]->getName() << ")" << std::endl;
|
||||
if (idom_map.count(idom_map[w])) {
|
||||
idom_map[w] = idom_map[idom_map[w]];
|
||||
if (DEBUG) std::cout << " Updating idom[" << w->getName() << "] to idom(idom(w)): "
|
||||
<< idom_map[w]->getName() << std::endl;
|
||||
} else {
|
||||
if (DEBUG) std::cout << " Warning: idom(idom(" << w->getName() << ")) not found, leaving idom[" << w->getName() << "] as is." << std::endl;
|
||||
}
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << " Final IDom[" << w->getName() << "] = " << (idom_map[w] ? idom_map[w]->getName() : "nullptr") << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 将计算结果从 idom_map 存储到 DominatorTree 的成员变量 IDoms 中
|
||||
IDoms = idom_map;
|
||||
|
||||
if (DEBUG) std::cout << "--- Immediate Dominators Computation Finished ---" << std::endl;
|
||||
IDoms[bb] = currentIDom;
|
||||
}
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// computeDominanceFrontiers 和 computeDominatorTreeChildren (保持不变)
|
||||
// ==============================================================
|
||||
|
||||
void DominatorTree::computeDominanceFrontiers(Function *F) {
|
||||
if (DEBUG)
|
||||
std::cout << "--- Computing Dominance Frontiers ---" << std::endl;
|
||||
|
||||
// 经典的支配边界计算算法
|
||||
for (const auto &bb_ptr_X : F->getBasicBlocks()) {
|
||||
BasicBlock *X = bb_ptr_X.get();
|
||||
DominanceFrontiers[X].clear();
|
||||
|
||||
for (BasicBlock *Y : X->getSuccessors()) {
|
||||
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
|
||||
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
|
||||
DominanceFrontiers[X].insert(Y);
|
||||
}
|
||||
}
|
||||
|
||||
const std::set<BasicBlock *> *domsOfX = getDominators(X);
|
||||
if (!domsOfX)
|
||||
continue;
|
||||
for (const auto &bb_ptr_Z : F->getBasicBlocks()) {
|
||||
BasicBlock *Z = bb_ptr_Z.get();
|
||||
const std::set<BasicBlock *> *domsOfZ = getDominators(Z);
|
||||
|
||||
if (!domsOfZ || domsOfZ->find(X) == domsOfZ->end()) { // Z 不被 X 支配
|
||||
if (Z == X)
|
||||
continue;
|
||||
}
|
||||
const std::set<BasicBlock *> *domsOfZ = getDominators(Z);
|
||||
if (domsOfZ && domsOfZ->count(X) && Z != X) {
|
||||
|
||||
for (BasicBlock *Y : Z->getSuccessors()) {
|
||||
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
|
||||
// 如果 Y == X,或者 Y 不被 X 严格支配 (即 Y 不被 X 支配)
|
||||
if (Y == X || (domsOfY && domsOfY->find(X) == domsOfY->end())) {
|
||||
DominanceFrontiers[X].insert(Y);
|
||||
for (BasicBlock *Y : Z->getSuccessors()) {
|
||||
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
|
||||
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
|
||||
DominanceFrontiers[X].insert(Y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << " DF(" << X->getName() << "): ";
|
||||
printBBSet("", DominanceFrontiers[X]);
|
||||
}
|
||||
}
|
||||
if (DEBUG)
|
||||
std::cout << "--- Dominance Frontiers Computation Finished ---" << std::endl;
|
||||
}
|
||||
|
||||
void DominatorTree::computeDominatorTreeChildren(Function *F) {
|
||||
if (DEBUG)
|
||||
std::cout << "--- Computing Dominator Tree Children ---" << std::endl;
|
||||
// 首先清空,确保重新计算时是空的
|
||||
for (auto &bb_ptr : F->getBasicBlocks()) {
|
||||
DominatorTreeChildren[bb_ptr.get()].clear();
|
||||
}
|
||||
|
||||
for (auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *B = bb_ptr.get();
|
||||
BasicBlock *A = getImmediateDominator(B); // A 是 B 的即时支配者
|
||||
|
||||
if (A) { // 如果 B 有即时支配者 A (即 B 不是入口块)
|
||||
DominatorTreeChildren[A].insert(B);
|
||||
if (DEBUG) {
|
||||
std::cout << " " << B->getName() << " is child of " << A->getName() << std::endl;
|
||||
auto it = getImmediateDominator(B);
|
||||
if (it != nullptr) {
|
||||
BasicBlock *A = it;
|
||||
if (A) {
|
||||
DominatorTreeChildren[A].insert(B);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (DEBUG)
|
||||
std::cout << "--- Dominator Tree Children Computation Finished ---" << std::endl;
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// DominatorTreeAnalysisPass 的实现 (保持不变)
|
||||
// DominatorTreeAnalysisPass 的实现
|
||||
// ==============================================================
|
||||
|
||||
bool DominatorTreeAnalysisPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
// 每次运行时清空旧数据,确保重新计算
|
||||
CurrentDominatorTree = std::make_unique<DominatorTree>(F);
|
||||
|
||||
bool DominatorTreeAnalysisPass::runOnFunction(Function* F, AnalysisManager &AM) {
|
||||
CurrentDominatorTree = std::make_unique<DominatorTree>(F);
|
||||
CurrentDominatorTree->computeDominators(F);
|
||||
CurrentDominatorTree->computeIDoms(F); // 修正后的LT算法
|
||||
CurrentDominatorTree->computeIDoms(F);
|
||||
CurrentDominatorTree->computeDominanceFrontiers(F);
|
||||
CurrentDominatorTree->computeDominatorTreeChildren(F);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::unique_ptr<AnalysisResultBase> DominatorTreeAnalysisPass::getResult() {
|
||||
// 返回计算好的 DominatorTree 实例,所有权转移给 AnalysisManager
|
||||
return std::move(CurrentDominatorTree);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,79 +0,0 @@
|
||||
#include "BuildCFG.h"
|
||||
#include "Dom.h"
|
||||
#include "Liveness.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void *BuildCFG::ID = (void *)&BuildCFG::ID; // 定义唯一的 Pass ID
|
||||
|
||||
// 声明Pass的分析使用
|
||||
void BuildCFG::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// BuildCFG不依赖其他分析
|
||||
// analysisDependencies.insert(&DominatorTreeAnalysisPass::ID); // 错误的例子
|
||||
|
||||
// BuildCFG会使所有依赖于CFG的分析结果失效,所以它必须声明这些失效
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID);
|
||||
}
|
||||
|
||||
bool BuildCFG::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Running BuildCFG pass on function: " << F->getName() << std::endl;
|
||||
}
|
||||
|
||||
bool changed = false;
|
||||
|
||||
// 1. 清空所有基本块的前驱和后继列表
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
bb->clearPredecessors();
|
||||
bb->clearSuccessors();
|
||||
}
|
||||
|
||||
// 2. 遍历每个基本块,重建CFG
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
// 获取基本块的最后一条指令
|
||||
auto &inst = *bb->terminator();
|
||||
Instruction *termInst = inst.get();
|
||||
// 确保基本块有终结指令
|
||||
if (!termInst) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 根据终结指令类型,建立前驱后继关系
|
||||
if (termInst->isBranch()) {
|
||||
// 无条件跳转
|
||||
if (termInst->isUnconditional()) {
|
||||
auto brInst = dynamic_cast<UncondBrInst *>(termInst);
|
||||
BasicBlock *succ = dynamic_cast<BasicBlock *>(brInst->getBlock());
|
||||
assert(succ && "Branch instruction's target must be a BasicBlock");
|
||||
bb->addSuccessor(succ);
|
||||
succ->addPredecessor(bb.get());
|
||||
changed = true;
|
||||
|
||||
// 条件跳转
|
||||
} else if (termInst->isConditional()) {
|
||||
auto brInst = dynamic_cast<CondBrInst *>(termInst);
|
||||
BasicBlock *trueSucc = dynamic_cast<BasicBlock *>(brInst->getThenBlock());
|
||||
BasicBlock *falseSucc = dynamic_cast<BasicBlock *>(brInst->getElseBlock());
|
||||
|
||||
assert(trueSucc && falseSucc && "Branch instruction's targets must be BasicBlocks");
|
||||
|
||||
bb->addSuccessor(trueSucc);
|
||||
trueSucc->addPredecessor(bb.get());
|
||||
bb->addSuccessor(falseSucc);
|
||||
falseSucc->addPredecessor(bb.get());
|
||||
changed = true;
|
||||
}
|
||||
} else if (auto retInst = dynamic_cast<ReturnInst *>(termInst)) {
|
||||
// RetInst没有后继,无需处理
|
||||
// ...
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
241
src/midend/Pass/Optimize/ConstPropagation.cpp
Normal file
241
src/midend/Pass/Optimize/ConstPropagation.cpp
Normal file
@@ -0,0 +1,241 @@
|
||||
#include "Pass/Optimize/ConstPropagation.h"
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char ConstPropagation::ID = 0;
|
||||
|
||||
bool ConstPropagation::runOnFunction(Function *func, AnalysisManager &am) {
|
||||
bool changed = false;
|
||||
bool localChanged = true;
|
||||
|
||||
while (localChanged) {
|
||||
localChanged = false;
|
||||
|
||||
for (auto &bb : func->getBasicBlocks()) {
|
||||
for (auto instIter = bb->getInstructions().begin();
|
||||
instIter != bb->getInstructions().end();) {
|
||||
auto &inst = *instIter;
|
||||
bool shouldAdvanceIter = true;
|
||||
|
||||
// 处理二元运算指令
|
||||
if (auto *binaryInst = dynamic_cast<BinaryInst *>(inst.get())) {
|
||||
auto *lhs = binaryInst->getLhs();
|
||||
auto *rhs = binaryInst->getRhs();
|
||||
|
||||
auto *lhsConst = dynamic_cast<ConstantValue *>(lhs);
|
||||
auto *rhsConst = dynamic_cast<ConstantValue *>(rhs);
|
||||
|
||||
if (lhsConst && rhsConst) {
|
||||
ConstantValue *newConst = nullptr;
|
||||
|
||||
try {
|
||||
if (lhs->isInt() && rhs->isInt()) {
|
||||
int l = lhsConst->getInt();
|
||||
int r = rhsConst->getInt();
|
||||
int result;
|
||||
bool validOperation = true;
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
// 检查加法溢出
|
||||
if ((r > 0 && l > INT_MAX - r) || (r < 0 && l < INT_MIN - r)) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
result = l + r;
|
||||
}
|
||||
break;
|
||||
case Instruction::kSub:
|
||||
// 检查减法溢出
|
||||
if ((r < 0 && l > INT_MAX + r) || (r > 0 && l < INT_MIN + r)) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
result = l - r;
|
||||
}
|
||||
break;
|
||||
case Instruction::kMul:
|
||||
// 检查乘法溢出
|
||||
if (l != 0 && r != 0 &&
|
||||
(std::abs(l) > INT_MAX / std::abs(r))) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
result = l * r;
|
||||
}
|
||||
break;
|
||||
case Instruction::kDiv:
|
||||
if (r == 0) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
result = l / r;
|
||||
}
|
||||
break;
|
||||
case Instruction::kRem:
|
||||
if (r == 0) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
result = l % r;
|
||||
}
|
||||
break;
|
||||
case Instruction::kICmpEQ: result = (l == r) ? 1 : 0; break;
|
||||
case Instruction::kICmpNE: result = (l != r) ? 1 : 0; break;
|
||||
case Instruction::kICmpLT: result = (l < r) ? 1 : 0; break;
|
||||
case Instruction::kICmpGT: result = (l > r) ? 1 : 0; break;
|
||||
case Instruction::kICmpLE: result = (l <= r) ? 1 : 0; break;
|
||||
case Instruction::kICmpGE: result = (l >= r) ? 1 : 0; break;
|
||||
case Instruction::kAnd: result = (l && r) ? 1 : 0; break;
|
||||
case Instruction::kOr: result = (l || r) ? 1 : 0; break;
|
||||
default:
|
||||
validOperation = false;
|
||||
}
|
||||
|
||||
if (validOperation) {
|
||||
if (binaryInst->isCmp() || binaryInst->getKind() == Instruction::kAnd ||
|
||||
binaryInst->getKind() == Instruction::kOr) {
|
||||
newConst = ConstantInteger::get(Type::getIntType(), result);
|
||||
} else {
|
||||
newConst = ConstantInteger::get(result);
|
||||
}
|
||||
}
|
||||
} else if (lhs->isFloat() && rhs->isFloat()) {
|
||||
float l = lhsConst->getFloat();
|
||||
float r = rhsConst->getFloat();
|
||||
bool validOperation = true;
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kFAdd: {
|
||||
float result = l + r;
|
||||
if (std::isfinite(result)) {
|
||||
newConst = ConstantFloating::get(result);
|
||||
} else {
|
||||
validOperation = false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kFSub: {
|
||||
float result = l - r;
|
||||
if (std::isfinite(result)) {
|
||||
newConst = ConstantFloating::get(result);
|
||||
} else {
|
||||
validOperation = false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kFMul: {
|
||||
float result = l * r;
|
||||
if (std::isfinite(result)) {
|
||||
newConst = ConstantFloating::get(result);
|
||||
} else {
|
||||
validOperation = false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kFDiv: {
|
||||
if (std::abs(r) < std::numeric_limits<float>::epsilon()) {
|
||||
validOperation = false;
|
||||
} else {
|
||||
float result = l / r;
|
||||
if (std::isfinite(result)) {
|
||||
newConst = ConstantFloating::get(result);
|
||||
} else {
|
||||
validOperation = false;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kFCmpEQ:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l == r) ? 1 : 0);
|
||||
break;
|
||||
case Instruction::kFCmpNE:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l != r) ? 1 : 0);
|
||||
break;
|
||||
case Instruction::kFCmpLT:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l < r) ? 1 : 0);
|
||||
break;
|
||||
case Instruction::kFCmpGT:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l > r) ? 1 : 0);
|
||||
break;
|
||||
case Instruction::kFCmpLE:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l <= r) ? 1 : 0);
|
||||
break;
|
||||
case Instruction::kFCmpGE:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (l >= r) ? 1 : 0);
|
||||
break;
|
||||
default:
|
||||
validOperation = false;
|
||||
}
|
||||
}
|
||||
} catch (...) {
|
||||
// 捕获可能的异常,跳过优化
|
||||
newConst = nullptr;
|
||||
}
|
||||
|
||||
if (newConst) {
|
||||
binaryInst->replaceAllUsesWith(newConst);
|
||||
instIter = bb->getInstructions().erase(instIter);
|
||||
shouldAdvanceIter = false;
|
||||
localChanged = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 处理一元运算指令
|
||||
else if (auto *unaryInst = dynamic_cast<UnaryInst *>(inst.get())) {
|
||||
auto *operand = unaryInst->getOperand();
|
||||
auto *operandConst = dynamic_cast<ConstantValue *>(operand);
|
||||
|
||||
if (operandConst) {
|
||||
ConstantValue *newConst = nullptr;
|
||||
|
||||
if (operand->isInt()) {
|
||||
int val = operandConst->getInt();
|
||||
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kNeg:
|
||||
if (val != INT_MIN) { // 避免溢出
|
||||
newConst = ConstantInteger::get(-val);
|
||||
}
|
||||
break;
|
||||
case Instruction::kNot:
|
||||
newConst = ConstantInteger::get(Type::getIntType(), (!val) ? 1 : 0);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else if (operand->isFloat()) {
|
||||
float val = operandConst->getFloat();
|
||||
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kFNeg:
|
||||
newConst = ConstantFloating::get(-val);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (newConst) {
|
||||
unaryInst->replaceAllUsesWith(newConst);
|
||||
instIter = bb->getInstructions().erase(instIter);
|
||||
shouldAdvanceIter = false;
|
||||
localChanged = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (shouldAdvanceIter) {
|
||||
++instIter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (localChanged) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -51,8 +51,10 @@ void DCEContext::run(Function *func, AnalysisManager *AM, bool &changed) {
|
||||
// 如果指令不在活跃集合中,则删除它。
|
||||
// 分支和返回指令由 isAlive 处理,并会被保留。
|
||||
if (alive_insts.count(currentInst) == 0) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter); // 删除后返回下一个迭代器
|
||||
// 删除指令,保留用户风格的 SysYIROptUtils::usedelete 和 erase
|
||||
changed = true; // 标记 IR 已被修改
|
||||
SysYIROptUtils::usedelete(currentInst);
|
||||
instIter = basicBlock->getInstructions().erase(instIter); // 删除后返回下一个迭代器
|
||||
} else {
|
||||
++instIter; // 指令活跃,移动到下一个
|
||||
}
|
||||
|
||||
@@ -1,145 +0,0 @@
|
||||
#include "../../include/midend/Pass/Optimize/LargeArrayToGlobal.h"
|
||||
#include "../../IR.h"
|
||||
#include <unordered_map>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// Helper function to convert type to string
|
||||
static std::string typeToString(Type *type) {
|
||||
if (!type) return "null";
|
||||
|
||||
switch (type->getKind()) {
|
||||
case Type::kInt:
|
||||
return "int";
|
||||
case Type::kFloat:
|
||||
return "float";
|
||||
case Type::kPointer:
|
||||
return "ptr";
|
||||
case Type::kArray: {
|
||||
auto *arrayType = type->as<ArrayType>();
|
||||
return "[" + std::to_string(arrayType->getNumElements()) + " x " +
|
||||
typeToString(arrayType->getElementType()) + "]";
|
||||
}
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
void *LargeArrayToGlobalPass::ID = &LargeArrayToGlobalPass::ID;
|
||||
|
||||
bool LargeArrayToGlobalPass::runOnModule(Module *M, AnalysisManager &AM) {
|
||||
bool changed = false;
|
||||
|
||||
if (!M) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Collect all alloca instructions from all functions
|
||||
std::vector<std::pair<AllocaInst*, Function*>> allocasToConvert;
|
||||
|
||||
for (auto &funcPair : M->getFunctions()) {
|
||||
Function *F = funcPair.second.get();
|
||||
if (!F || F->getBasicBlocks().begin() == F->getBasicBlocks().end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (auto &BB : F->getBasicBlocks()) {
|
||||
for (auto &inst : BB->getInstructions()) {
|
||||
if (auto *alloca = dynamic_cast<AllocaInst*>(inst.get())) {
|
||||
Type *allocatedType = alloca->getAllocatedType();
|
||||
|
||||
// Calculate the size of the allocated type
|
||||
unsigned size = calculateTypeSize(allocatedType);
|
||||
if(DEBUG){
|
||||
// Debug: print size information
|
||||
std::cout << "LargeArrayToGlobalPass: Found alloca with size " << size
|
||||
<< " for type " << typeToString(allocatedType) << std::endl;
|
||||
}
|
||||
|
||||
// Convert arrays of 1KB (1024 bytes) or larger to global variables
|
||||
if (size >= 1024) {
|
||||
if(DEBUG)
|
||||
std::cout << "LargeArrayToGlobalPass: Converting array of size " << size << " to global" << std::endl;
|
||||
allocasToConvert.emplace_back(alloca, F);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the collected alloca instructions to global variables
|
||||
for (auto [alloca, F] : allocasToConvert) {
|
||||
convertAllocaToGlobal(alloca, F, M);
|
||||
changed = true;
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
unsigned LargeArrayToGlobalPass::calculateTypeSize(Type *type) {
|
||||
if (!type) return 0;
|
||||
|
||||
switch (type->getKind()) {
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
case Type::kArray: {
|
||||
auto *arrayType = type->as<ArrayType>();
|
||||
return arrayType->getNumElements() * calculateTypeSize(arrayType->getElementType());
|
||||
}
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void LargeArrayToGlobalPass::convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M) {
|
||||
Type *allocatedType = alloca->getAllocatedType();
|
||||
|
||||
// Create a unique name for the global variable
|
||||
std::string globalName = generateUniqueGlobalName(alloca, F);
|
||||
|
||||
// Create the global variable - GlobalValue expects pointer type
|
||||
Type *pointerType = Type::getPointerType(allocatedType);
|
||||
GlobalValue *globalVar = M->createGlobalValue(globalName, pointerType);
|
||||
|
||||
if (!globalVar) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Replace all uses of the alloca with the global variable
|
||||
alloca->replaceAllUsesWith(globalVar);
|
||||
|
||||
// Remove the alloca instruction from its basic block
|
||||
for (auto &BB : F->getBasicBlocks()) {
|
||||
auto &instructions = BB->getInstructions();
|
||||
for (auto it = instructions.begin(); it != instructions.end(); ++it) {
|
||||
if (it->get() == alloca) {
|
||||
instructions.erase(it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string LargeArrayToGlobalPass::generateUniqueGlobalName(AllocaInst *alloca, Function *F) {
|
||||
std::string baseName = alloca->getName();
|
||||
if (baseName.empty()) {
|
||||
baseName = "array";
|
||||
}
|
||||
|
||||
// Ensure uniqueness by appending function name and counter
|
||||
static std::unordered_map<std::string, int> nameCounter;
|
||||
std::string key = F->getName() + "." + baseName;
|
||||
|
||||
int counter = nameCounter[key]++;
|
||||
std::ostringstream oss;
|
||||
oss << key << "." << counter;
|
||||
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -60,7 +60,7 @@ void Mem2RegContext::run(Function *func, AnalysisManager *AM) {
|
||||
}
|
||||
|
||||
// 从入口基本块开始,对支配树进行 DFS 遍历,进行变量重命名
|
||||
renameVariables(func->getEntryBlock()); // 第一个参数 alloca 在这里不使用,因为是递归入口点
|
||||
renameVariables(nullptr, func->getEntryBlock()); // 第一个参数 alloca 在这里不使用,因为是递归入口点
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段4: 清理
|
||||
@@ -209,21 +209,16 @@ void Mem2RegContext::insertPhis(AllocaInst *alloca, const std::unordered_set<Bas
|
||||
}
|
||||
|
||||
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
|
||||
// 移除了 AllocaInst *currentAlloca 参数,因为这个函数是为整个基本块处理所有可提升的 Alloca
|
||||
void Mem2RegContext::renameVariables(BasicBlock *currentBB) {
|
||||
// 1. 在函数开始时,记录每个 promotableAlloca 的当前栈深度。
|
||||
// 这将用于在函数返回时精确地回溯栈状态。
|
||||
std::map<AllocaInst *, size_t> originalStackSizes;
|
||||
for (auto alloca : promotableAllocas) {
|
||||
originalStackSizes[alloca] = allocaToValueStackMap[alloca].size();
|
||||
}
|
||||
void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *currentBB) {
|
||||
// 维护一个局部栈,用于存储当前基本块中为 Phi 和 Store 创建的 SSA 值,以便在退出时弹出
|
||||
std::stack<Value *> localStackPushed;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 处理当前基本块的指令
|
||||
// --------------------------------------------------------------------
|
||||
for (auto instIter = currentBB->getInstructions().begin(); instIter != currentBB->getInstructions().end();) {
|
||||
Instruction *inst = instIter->get();
|
||||
bool instDeleted = false;
|
||||
bool instDeleted = false;
|
||||
|
||||
// 处理 Phi 指令 (如果是当前 alloca 的 Phi)
|
||||
if (auto phiInst = dynamic_cast<PhiInst *>(inst)) {
|
||||
@@ -232,69 +227,52 @@ void Mem2RegContext::renameVariables(BasicBlock *currentBB) {
|
||||
if (allocaToPhiMap[alloca].count(currentBB) && allocaToPhiMap[alloca][currentBB] == phiInst) {
|
||||
// 为 Phi 指令的输出创建一个新的 SSA 值,并压入值栈
|
||||
allocaToValueStackMap[alloca].push(phiInst);
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Pushed Phi " << (phiInst->getName().empty() ? "anonymous" : phiInst->getName()) << " for alloca " << alloca->getName()
|
||||
<< ". Stack size: " << allocaToValueStackMap[alloca].size() << std::endl;
|
||||
}
|
||||
break; // 找到对应的 alloca,处理下一个指令
|
||||
localStackPushed.push(phiInst); // 记录以便弹出
|
||||
break; // 找到对应的 alloca,处理下一个指令
|
||||
}
|
||||
}
|
||||
}
|
||||
// 处理 LoadInst
|
||||
else if (auto loadInst = dynamic_cast<LoadInst *>(inst)) {
|
||||
// 检查这个 LoadInst 是否是为某个可提升的 alloca
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 检查 LoadInst 的指针是否直接是 alloca,或者是指向 alloca 的 GEP
|
||||
Value *ptrOperand = loadInst->getPointer();
|
||||
if (ptrOperand == alloca || (dynamic_cast<GetElementPtrInst *>(ptrOperand) &&
|
||||
dynamic_cast<GetElementPtrInst *>(ptrOperand)->getBasePointer() == alloca)) {
|
||||
if (loadInst->getPointer() == alloca) {
|
||||
// loadInst->getPointer() 返回 AllocaInst*
|
||||
// 将 LoadInst 的所有用途替换为当前 alloca 值栈顶部的 SSA 值
|
||||
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca during load replacement!");
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Replacing load "
|
||||
<< (ptrOperand->getName().empty() ? "anonymous" : ptrOperand->getName()) << " with SSA value "
|
||||
<< (allocaToValueStackMap[alloca].top()->getName().empty()
|
||||
? "anonymous"
|
||||
: allocaToValueStackMap[alloca].top()->getName())
|
||||
<< " for alloca " << alloca->getName() << std::endl;
|
||||
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
|
||||
<< "] size: " << allocaToValueStackMap[alloca].size() << std::endl;
|
||||
}
|
||||
loadInst->replaceAllUsesWith(allocaToValueStackMap[alloca].top());
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
// instIter = currentBB->force_delete_inst(loadInst); // 删除 LoadInst
|
||||
SysYIROptUtils::usedelete(loadInst); // 仅删除 use 关系
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 LoadInst
|
||||
instDeleted = true;
|
||||
// std::cerr << "Mem2Reg: Replaced load " << loadInst->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 处理 StoreInst
|
||||
else if (auto storeInst = dynamic_cast<StoreInst *>(inst)) {
|
||||
// 检查这个 StoreInst 是否是为某个可提升的 alloca
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 检查 StoreInst 的指针是否直接是 alloca,或者是指向 alloca 的 GEP
|
||||
Value *ptrOperand = storeInst->getPointer();
|
||||
if (ptrOperand == alloca || (dynamic_cast<GetElementPtrInst *>(ptrOperand) &&
|
||||
dynamic_cast<GetElementPtrInst *>(ptrOperand)->getBasePointer() == alloca)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Replacing store to "
|
||||
<< (ptrOperand->getName().empty() ? "anonymous" : ptrOperand->getName()) << " with SSA value "
|
||||
<< (storeInst->getValue()->getName().empty() ? "anonymous" : storeInst->getValue()->getName())
|
||||
<< " for alloca " << alloca->getName() << std::endl;
|
||||
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
|
||||
<< "] size before push: " << allocaToValueStackMap[alloca].size() << std::endl;
|
||||
}
|
||||
if (storeInst->getPointer() == alloca) {
|
||||
// 假设 storeInst->getPointer() 返回 AllocaInst*
|
||||
// 将 StoreInst 存储的值作为新的 SSA 值,压入值栈
|
||||
allocaToValueStackMap[alloca].push(storeInst->getValue());
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
localStackPushed.push(storeInst->getValue()); // 记录以便弹出
|
||||
SysYIROptUtils::usedelete(storeInst);
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 StoreInst
|
||||
instDeleted = true;
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
|
||||
<< "] size after push: " << allocaToValueStackMap[alloca].size() << std::endl;
|
||||
}
|
||||
// std::cerr << "Mem2Reg: Replaced store to " << storeInst->ptr()->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!instDeleted) {
|
||||
++instIter; // 如果指令没有被删除,移动到下一个
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 处理后继基本块的 Phi 指令参数
|
||||
// --------------------------------------------------------------------
|
||||
@@ -309,57 +287,38 @@ void Mem2RegContext::renameVariables(BasicBlock *currentBB) {
|
||||
// 参数值是当前 alloca 值栈顶部的 SSA 值
|
||||
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca when setting phi operand!");
|
||||
phiInst->addIncoming(allocaToValueStackMap[alloca].top(), currentBB);
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Added incoming arg to Phi "
|
||||
<< (phiInst->getName().empty() ? "anonymous" : phiInst->getName()) << " from "
|
||||
<< currentBB->getName() << " with value "
|
||||
<< (allocaToValueStackMap[alloca].top()->getName().empty()
|
||||
? "anonymous"
|
||||
: allocaToValueStackMap[alloca].top()->getName())
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 递归访问支配树的子节点
|
||||
// --------------------------------------------------------------------
|
||||
const std::set<BasicBlock *> *dominatedBlocks = dt->getDominatorTreeChildren(currentBB);
|
||||
if (dominatedBlocks) { // 检查是否存在子节点
|
||||
if(DEBUG){
|
||||
std::cout << "Mem2Reg: Processing dominated blocks for " << currentBB->getName() << std::endl;
|
||||
for (auto dominatedBB : *dominatedBlocks) {
|
||||
std::cout << "Mem2Reg: Dominated block: " << (dominatedBB ? dominatedBB->getName() : "null") << std::endl;
|
||||
}
|
||||
}
|
||||
if(dominatedBlocks){
|
||||
for (auto dominatedBB : *dominatedBlocks) {
|
||||
if (dominatedBB) { // 确保子块有效
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName()
|
||||
<< std::endl;
|
||||
}
|
||||
renameVariables(dominatedBB); // 递归调用,不再传递 currentAlloca
|
||||
if (dominatedBB) {
|
||||
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName() << std::endl;
|
||||
renameVariables(currentAlloca, dominatedBB);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 退出基本块时,弹出在此块中压入值栈的 SSA 值,恢复栈到进入该块时的状态
|
||||
// 退出基本块时,弹出在此块中压入值栈的 SSA 值
|
||||
// --------------------------------------------------------------------
|
||||
for (auto alloca : promotableAllocas) {
|
||||
while (allocaToValueStackMap[alloca].size() > originalStackSizes[alloca]) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Mem2Reg: Popping value "
|
||||
<< (allocaToValueStackMap[alloca].top()->getName().empty()
|
||||
? "anonymous"
|
||||
: allocaToValueStackMap[alloca].top()->getName())
|
||||
<< " for alloca " << alloca->getName() << ". Stack size: " << allocaToValueStackMap[alloca].size()
|
||||
<< " -> " << (allocaToValueStackMap[alloca].size() - 1) << std::endl;
|
||||
while (!localStackPushed.empty()) {
|
||||
Value *val = localStackPushed.top();
|
||||
localStackPushed.pop();
|
||||
// 找到是哪个 alloca 对应的栈
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (!allocaToValueStackMap[alloca].empty() && allocaToValueStackMap[alloca].top() == val) {
|
||||
allocaToValueStackMap[alloca].pop();
|
||||
break;
|
||||
}
|
||||
allocaToValueStackMap[alloca].pop();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// 删除所有原始的 AllocaInst、LoadInst 和 StoreInst
|
||||
@@ -368,6 +327,7 @@ void Mem2RegContext::cleanup() {
|
||||
if (alloca && alloca->getParent()) {
|
||||
// 删除 alloca 指令本身
|
||||
SysYIROptUtils::usedelete(alloca);
|
||||
alloca->getParent()->removeInst(alloca); // 从基本块中删除 alloca
|
||||
|
||||
// std::cerr << "Mem2Reg: Deleted alloca " << alloca->name() << std::endl;
|
||||
}
|
||||
|
||||
@@ -74,7 +74,7 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
|
||||
// 默认情况下,将所有参数是提升到内存
|
||||
if (isPromotableToMemory(arg)) {
|
||||
// 参数的类型就是 AllocaInst 需要分配的类型
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), arg->getName() + ".reg2mem");
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), {}, arg->getName() + ".reg2mem");
|
||||
// 将参数值 store 到 alloca 中 (这是 Mem2Reg 逆转的关键一步)
|
||||
valueToAllocaMap[arg] = alloca;
|
||||
|
||||
@@ -103,7 +103,7 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
|
||||
// AllocaInst 应该在入口块,而不是当前指令所在块
|
||||
// 这里我们只是创建,并稍后调整其位置
|
||||
// 通常的做法是在循环结束后统一将 alloca 放到 entryBlock 的顶部
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(inst.get()->getType()), inst.get()->getName() + ".reg2mem");
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(inst.get()->getType()), {}, inst.get()->getName() + ".reg2mem");
|
||||
valueToAllocaMap[inst.get()] = alloca;
|
||||
}
|
||||
}
|
||||
@@ -148,8 +148,8 @@ void Reg2MemContext::rewritePhis(Function *func) {
|
||||
// 1. 为 Phi 指令的每个入边,在前驱块的末尾插入 Store 指令
|
||||
// PhiInst 假设有 getIncomingValues() 和 getIncomingBlocks()
|
||||
for (unsigned i = 0; i < phiInst->getNumIncomingValues(); ++i) { // 假设 PhiInst 是通过操作数来管理入边的
|
||||
Value *incomingValue = phiInst->getIncomingValue(i); // 获取入值
|
||||
BasicBlock *incomingBlock = phiInst->getIncomingBlock(i); // 获取对应的入块
|
||||
Value *incomingValue = phiInst->getValue(i); // 获取入值
|
||||
BasicBlock *incomingBlock = phiInst->getBlock(i); // 获取对应的入块
|
||||
|
||||
// 在入块的跳转指令之前插入 StoreInst
|
||||
// 需要找到 incomingBlock 的终结指令 (Terminator Instruction)
|
||||
@@ -181,7 +181,8 @@ void Reg2MemContext::rewritePhis(Function *func) {
|
||||
// 实际删除 Phi 指令
|
||||
for (auto phi : phisToErase) {
|
||||
if (phi && phi->getParent()) {
|
||||
SysYIROptUtils::usedelete(phi);
|
||||
SysYIROptUtils::usedelete(phi); // 清理 use-def 链
|
||||
phi->getParent()->removeInst(phi); // 从基本块中删除
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,984 +0,0 @@
|
||||
#include "SCCP.h"
|
||||
#include "Dom.h"
|
||||
#include "Liveness.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath> // For std::fmod, std::fabs
|
||||
#include <limits> // For std::numeric_limits
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// Pass ID for SCCP
|
||||
void *SCCP::ID = (void *)&SCCP::ID;
|
||||
|
||||
// SCCPContext methods
|
||||
SSAPValue SCCPContext::Meet(const SSAPValue &a, const SSAPValue &b) {
|
||||
if (a.state == LatticeVal::Bottom || b.state == LatticeVal::Bottom) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
if (a.state == LatticeVal::Top) {
|
||||
return b;
|
||||
}
|
||||
if (b.state == LatticeVal::Top) {
|
||||
return a;
|
||||
}
|
||||
// Both are constants
|
||||
if (a.constant_type != b.constant_type) {
|
||||
return SSAPValue(LatticeVal::Bottom); // 不同类型的常量,结果为 Bottom
|
||||
}
|
||||
if (a.constantVal == b.constantVal) {
|
||||
return a; // 相同常量
|
||||
}
|
||||
return SSAPValue(LatticeVal::Bottom); // 相同类型但值不同,结果为 Bottom
|
||||
}
|
||||
|
||||
SSAPValue SCCPContext::GetValueState(Value *v) {
|
||||
if (auto constVal = dynamic_cast<ConstantValue *>(v)) {
|
||||
// 特殊处理 UndefinedValue:将其视为 Bottom
|
||||
if (dynamic_cast<UndefinedValue *>(constVal)) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
// 处理常规的 ConstantInteger 和 ConstantFloating
|
||||
if (constVal->getType()->isInt()) {
|
||||
return SSAPValue(constVal->getInt());
|
||||
} else if (constVal->getType()->isFloat()) {
|
||||
return SSAPValue(constVal->getFloat());
|
||||
} else {
|
||||
// 对于其他 ConstantValue 类型(例如,ConstantArray 等),
|
||||
// 如果它们的具体值不能用于标量常量传播,则保守地视为 Bottom。
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
}
|
||||
if (valueState.count(v)) {
|
||||
return valueState[v];
|
||||
}
|
||||
return SSAPValue(); // 默认初始化为 Top
|
||||
}
|
||||
|
||||
void SCCPContext::UpdateState(Value *v, SSAPValue newState) {
|
||||
SSAPValue oldState = GetValueState(v);
|
||||
if (newState != oldState) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating state for " << v->getName() << " from (";
|
||||
if (oldState.state == LatticeVal::Top)
|
||||
std::cout << "Top";
|
||||
else if (oldState.state == LatticeVal::Constant) {
|
||||
if (oldState.constant_type == ValueType::Integer)
|
||||
std::cout << "Const<int>(" << std::get<int>(oldState.constantVal) << ")";
|
||||
else
|
||||
std::cout << "Const<float>(" << std::get<float>(oldState.constantVal) << ")";
|
||||
} else
|
||||
std::cout << "Bottom";
|
||||
std::cout << ") to (";
|
||||
if (newState.state == LatticeVal::Top)
|
||||
std::cout << "Top";
|
||||
else if (newState.state == LatticeVal::Constant) {
|
||||
if (newState.constant_type == ValueType::Integer)
|
||||
std::cout << "Const<int>(" << std::get<int>(newState.constantVal) << ")";
|
||||
else
|
||||
std::cout << "Const<float>(" << std::get<float>(newState.constantVal) << ")";
|
||||
} else
|
||||
std::cout << "Bottom";
|
||||
std::cout << ")" << std::endl;
|
||||
}
|
||||
|
||||
valueState[v] = newState;
|
||||
// 如果状态发生变化,将所有使用者添加到指令工作列表
|
||||
for (auto &use_ptr : v->getUses()) {
|
||||
if (auto userInst = dynamic_cast<Instruction *>(use_ptr->getUser())) {
|
||||
instWorkList.push(userInst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SCCPContext::AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB) {
|
||||
// 检查边是否已经访问过,防止重复处理
|
||||
if (visitedCFGEdges.count({fromBB, toBB})) {
|
||||
return;
|
||||
}
|
||||
visitedCFGEdges.insert({fromBB, toBB});
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Adding edge to worklist: " << fromBB->getName() << " -> " << toBB->getName() << std::endl;
|
||||
}
|
||||
edgeWorkList.push({fromBB, toBB});
|
||||
}
|
||||
|
||||
void SCCPContext::MarkBlockExecutable(BasicBlock *block) {
|
||||
if (executableBlocks.insert(block).second) { // insert 返回 pair,second 为 true 表示插入成功
|
||||
if (DEBUG) {
|
||||
std::cout << "Marking block " << block->getName() << " as executable." << std::endl;
|
||||
}
|
||||
// 将新可执行块中的所有指令添加到指令工作列表
|
||||
for (auto &inst_ptr : block->getInstructions()) {
|
||||
instWorkList.push(inst_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 辅助函数:对二元操作进行常量折叠
|
||||
SSAPValue SCCPContext::ComputeConstant(BinaryInst *binaryInst, SSAPValue lhsVal, SSAPValue rhsVal) {
|
||||
// 确保操作数是常量
|
||||
if (lhsVal.state != LatticeVal::Constant || rhsVal.state != LatticeVal::Constant) {
|
||||
return SSAPValue(LatticeVal::Bottom); // 如果不是常量,则不能折叠
|
||||
}
|
||||
|
||||
// 处理整数运算 (kAdd, kSub, kMul, kDiv, kRem, kICmp*, kAnd, kOr)
|
||||
if (lhsVal.constant_type == ValueType::Integer && rhsVal.constant_type == ValueType::Integer) {
|
||||
int lhs = std::get<int>(lhsVal.constantVal);
|
||||
int rhs = std::get<int>(rhsVal.constantVal);
|
||||
int result = 0;
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
result = lhs + rhs;
|
||||
break;
|
||||
case Instruction::kSub:
|
||||
result = lhs - rhs;
|
||||
break;
|
||||
case Instruction::kMul:
|
||||
result = lhs * rhs;
|
||||
break;
|
||||
case Instruction::kDiv:
|
||||
if (rhs == 0)
|
||||
return SSAPValue(LatticeVal::Bottom); // 除零
|
||||
result = lhs / rhs;
|
||||
break;
|
||||
case Instruction::kRem:
|
||||
if (rhs == 0)
|
||||
return SSAPValue(LatticeVal::Bottom); // 模零
|
||||
result = lhs % rhs;
|
||||
break;
|
||||
case Instruction::kICmpEQ:
|
||||
result = (lhs == rhs);
|
||||
break;
|
||||
case Instruction::kICmpNE:
|
||||
result = (lhs != rhs);
|
||||
break;
|
||||
case Instruction::kICmpLT:
|
||||
result = (lhs < rhs);
|
||||
break;
|
||||
case Instruction::kICmpGT:
|
||||
result = (lhs > rhs);
|
||||
break;
|
||||
case Instruction::kICmpLE:
|
||||
result = (lhs <= rhs);
|
||||
break;
|
||||
case Instruction::kICmpGE:
|
||||
result = (lhs >= rhs);
|
||||
break;
|
||||
case Instruction::kAnd:
|
||||
result = (lhs && rhs);
|
||||
break;
|
||||
case Instruction::kOr:
|
||||
result = (lhs || rhs);
|
||||
break;
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的二元操作
|
||||
}
|
||||
return SSAPValue(result);
|
||||
}
|
||||
// 处理浮点运算 (kFAdd, kFSub, kFMul, kFDiv, kFCmp*)
|
||||
else if (lhsVal.constant_type == ValueType::Float && rhsVal.constant_type == ValueType::Float) {
|
||||
float lhs = std::get<float>(lhsVal.constantVal);
|
||||
float rhs = std::get<float>(rhsVal.constantVal);
|
||||
float f_result = 0.0f;
|
||||
int i_result = 0; // For comparison results
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kFAdd:
|
||||
f_result = lhs + rhs;
|
||||
break;
|
||||
case Instruction::kFSub:
|
||||
f_result = lhs - rhs;
|
||||
break;
|
||||
case Instruction::kFMul:
|
||||
f_result = lhs * rhs;
|
||||
break;
|
||||
case Instruction::kFDiv:
|
||||
if (rhs == 0.0f)
|
||||
return SSAPValue(LatticeVal::Bottom); // 除零
|
||||
f_result = lhs / rhs;
|
||||
break;
|
||||
// kRem 不支持浮点数,但如果你的 IR 定义了浮点模运算,需要使用 std::fmod
|
||||
case Instruction::kFCmpEQ:
|
||||
i_result = (lhs == rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpNE:
|
||||
i_result = (lhs != rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpLT:
|
||||
i_result = (lhs < rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpGT:
|
||||
i_result = (lhs > rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpLE:
|
||||
i_result = (lhs <= rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpGE:
|
||||
i_result = (lhs >= rhs);
|
||||
return SSAPValue(i_result);
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的浮点二元操作
|
||||
}
|
||||
return SSAPValue(f_result);
|
||||
}
|
||||
|
||||
return SSAPValue(LatticeVal::Bottom); // 类型不匹配或不支持的类型组合
|
||||
}
|
||||
|
||||
// 辅助函数:对一元操作进行常量折叠
|
||||
SSAPValue SCCPContext::ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal) {
|
||||
if (operandVal.state != LatticeVal::Constant) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
|
||||
if (operandVal.constant_type == ValueType::Integer) {
|
||||
int val = std::get<int>(operandVal.constantVal);
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
return SSAPValue(val);
|
||||
case Instruction::kNeg:
|
||||
return SSAPValue(-val);
|
||||
case Instruction::kNot:
|
||||
return SSAPValue(!val);
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
} else if (operandVal.constant_type == ValueType::Float) {
|
||||
float val = std::get<float>(operandVal.constantVal);
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
return SSAPValue(val);
|
||||
case Instruction::kFNeg:
|
||||
return SSAPValue(-val);
|
||||
case Instruction::kFNot:
|
||||
return SSAPValue(static_cast<int>(val == 0.0f)); // 浮点数非,0.0f 为真,其他为假
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
}
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
|
||||
// 辅助函数:处理单条指令
|
||||
void SCCPContext::ProcessInstruction(Instruction *inst) {
|
||||
SSAPValue oldState = GetValueState(inst);
|
||||
SSAPValue newState;
|
||||
|
||||
if (!executableBlocks.count(inst->getParent())) {
|
||||
// 如果指令所在的块不可执行,其值应保持 Top
|
||||
// 除非它之前已经是 Bottom,因为 Bottom 是单调的
|
||||
if (oldState.state != LatticeVal::Bottom) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else {
|
||||
newState = oldState; // 保持 Bottom
|
||||
}
|
||||
UpdateState(inst, newState);
|
||||
return; // 不处理不可达块中的指令的实际值
|
||||
}
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "Processing instruction: " << inst->getName() << " in block " << inst->getParent()->getName() << std::endl;
|
||||
std::cout << "Old state: ";
|
||||
if (oldState.state == LatticeVal::Top) {
|
||||
std::cout << "Top";
|
||||
} else if (oldState.state == LatticeVal::Constant) {
|
||||
if (oldState.constant_type == ValueType::Integer) {
|
||||
std::cout << "Const<int>(" << std::get<int>(oldState.constantVal) << ")";
|
||||
} else {
|
||||
std::cout << "Const<float>(" << std::get<float>(oldState.constantVal) << ")";
|
||||
}
|
||||
} else {
|
||||
std::cout << "Bottom";
|
||||
}
|
||||
}
|
||||
|
||||
switch (inst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
case Instruction::kSub:
|
||||
case Instruction::kMul:
|
||||
case Instruction::kDiv:
|
||||
case Instruction::kRem:
|
||||
case Instruction::kICmpEQ:
|
||||
case Instruction::kICmpNE:
|
||||
case Instruction::kICmpLT:
|
||||
case Instruction::kICmpGT:
|
||||
case Instruction::kICmpLE:
|
||||
case Instruction::kICmpGE:
|
||||
case Instruction::kFAdd:
|
||||
case Instruction::kFSub:
|
||||
case Instruction::kFMul:
|
||||
case Instruction::kFDiv:
|
||||
case Instruction::kFCmpEQ:
|
||||
case Instruction::kFCmpNE:
|
||||
case Instruction::kFCmpLT:
|
||||
case Instruction::kFCmpGT:
|
||||
case Instruction::kFCmpLE:
|
||||
case Instruction::kFCmpGE:
|
||||
case Instruction::kAnd:
|
||||
case Instruction::kOr: {
|
||||
BinaryInst *binaryInst = static_cast<BinaryInst *>(inst);
|
||||
SSAPValue lhs = GetValueState(binaryInst->getOperand(0));
|
||||
SSAPValue rhs = GetValueState(binaryInst->getOperand(1));
|
||||
// 如果任一操作数是 Bottom,结果就是 Bottom
|
||||
if (lhs.state == LatticeVal::Bottom || rhs.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else if (lhs.state == LatticeVal::Top || rhs.state == LatticeVal::Top) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else { // 都是常量
|
||||
newState = ComputeConstant(binaryInst, lhs, rhs);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kNeg:
|
||||
case Instruction::kNot:
|
||||
case Instruction::kFNeg:
|
||||
case Instruction::kFNot: {
|
||||
UnaryInst *unaryInst = static_cast<UnaryInst *>(inst);
|
||||
SSAPValue operand = GetValueState(unaryInst->getOperand());
|
||||
if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else if (operand.state == LatticeVal::Top) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else { // 是常量
|
||||
newState = ComputeConstant(unaryInst, operand);
|
||||
}
|
||||
break;
|
||||
}
|
||||
// 直接处理类型转换指令
|
||||
case Instruction::kFtoI: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
|
||||
newState = SSAPValue(static_cast<int>(std::get<float>(operand.constantVal)));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kItoF: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
|
||||
newState = SSAPValue(static_cast<float>(std::get<int>(operand.constantVal)));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kBitFtoI: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
|
||||
float fval = std::get<float>(operand.constantVal);
|
||||
newState = SSAPValue(*reinterpret_cast<int *>(&fval));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kBitItoF: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
|
||||
int ival = std::get<int>(operand.constantVal);
|
||||
newState = SSAPValue(*reinterpret_cast<float *>(&ival));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kLoad: {
|
||||
// 对于 Load 指令,除非我们有特殊的别名分析,否则假定为 Bottom
|
||||
// 或者如果它加载的是一个已知常量地址的全局常量
|
||||
Value *ptr = inst->getOperand(0);
|
||||
if (auto globalVal = dynamic_cast<GlobalValue *>(ptr)) {
|
||||
// 如果 GlobalValue 有初始化器,并且它是常量,我们可以传播
|
||||
// 这需要额外的逻辑来检查 globalVal 的初始化器
|
||||
// 暂时保守地设置为 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kStore:
|
||||
// Store 指令不产生值,其 SSAPValue 不重要
|
||||
newState = SSAPValue(); // 保持 Top
|
||||
break;
|
||||
case Instruction::kCall:
|
||||
// TODO: 处理 Call 指令根据副作用分析可以推断的常量
|
||||
// 大多数 Call 指令都假定为 Bottom,除非是纯函数且所有参数都是常量
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
case Instruction::kGetElementPtr: {
|
||||
// GEP 指令计算地址,通常其结果值(地址指向的内容)是 Bottom
|
||||
// 除非所有索引和基指针都是常量,指向一个确定常量值的内存位置
|
||||
bool all_ops_constant = true;
|
||||
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
|
||||
if (GetValueState(inst->getOperand(i)).state != LatticeVal::Constant) {
|
||||
all_ops_constant = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 即使地址是常量,地址处的内容通常不是。所以通常是 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
}
|
||||
case Instruction::kPhi: {
|
||||
PhiInst *phi = static_cast<PhiInst *>(inst);
|
||||
if(DEBUG) {
|
||||
std::cout << "Processing Phi node: " << phi->getName() << std::endl;
|
||||
}
|
||||
// 标准SCCP的phi节点处理:
|
||||
// 只考虑可执行前驱,但要保证单调性
|
||||
SSAPValue currentPhiState = GetValueState(phi);
|
||||
SSAPValue phiResult = SSAPValue(); // 初始为 Top
|
||||
bool hasAnyExecutablePred = false;
|
||||
|
||||
for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
|
||||
BasicBlock *incomingBlock = phi->getIncomingBlock(i);
|
||||
|
||||
if (executableBlocks.count(incomingBlock)) {
|
||||
hasAnyExecutablePred = true;
|
||||
Value *incomingVal = phi->getIncomingValue(i);
|
||||
SSAPValue incomingState = GetValueState(incomingVal);
|
||||
if(DEBUG) {
|
||||
std::cout << " Incoming from block " << incomingBlock->getName()
|
||||
<< " with value " << incomingVal->getName() << " state: ";
|
||||
if (incomingState.state == LatticeVal::Top)
|
||||
std::cout << "Top";
|
||||
else if (incomingState.state == LatticeVal::Constant) {
|
||||
if (incomingState.constant_type == ValueType::Integer)
|
||||
std::cout << "Const<int>(" << std::get<int>(incomingState.constantVal) << ")";
|
||||
else
|
||||
std::cout << "Const<float>(" << std::get<float>(incomingState.constantVal) << ")";
|
||||
} else
|
||||
std::cout << "Bottom";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
phiResult = Meet(phiResult, incomingState);
|
||||
|
||||
if (phiResult.state == LatticeVal::Bottom) {
|
||||
break; // 提前退出优化
|
||||
}
|
||||
}
|
||||
// 不可执行前驱暂时被忽略
|
||||
// 这是标准SCCP的做法,依赖于单调性保证正确性
|
||||
}
|
||||
|
||||
if (!hasAnyExecutablePred) {
|
||||
// 没有可执行前驱,保持Top状态
|
||||
newState = SSAPValue();
|
||||
} else {
|
||||
// 关键修复:使用严格的单调性
|
||||
// 确保phi的值只能从Top -> Constant -> Bottom单向变化
|
||||
if (currentPhiState.state == LatticeVal::Top) {
|
||||
// 从Top状态,可以变为任何计算结果
|
||||
newState = phiResult;
|
||||
} else if (currentPhiState.state == LatticeVal::Constant) {
|
||||
// 从Constant状态,只能保持相同常量或变为Bottom
|
||||
if (phiResult.state == LatticeVal::Constant &&
|
||||
currentPhiState.constantVal == phiResult.constantVal &&
|
||||
currentPhiState.constant_type == phiResult.constant_type) {
|
||||
// 保持相同的常量
|
||||
newState = currentPhiState;
|
||||
} else {
|
||||
// 不同的值,必须变为Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
} else {
|
||||
// 已经是Bottom,保持Bottom
|
||||
newState = currentPhiState;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kAlloca: // 对应 kAlloca
|
||||
// Alloca 分配内存,返回一个指针,其内容是 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
case Instruction::kBr: // 对应 kBr
|
||||
case Instruction::kCondBr: // 对应 kCondBr
|
||||
case Instruction::kReturn: // 对应 kReturn
|
||||
case Instruction::kUnreachable: // 对应 kUnreachable
|
||||
// 终结符指令不产生值
|
||||
newState = SSAPValue(); // 保持 Top
|
||||
break;
|
||||
case Instruction::kMemset:
|
||||
// Memset 不产生值,但有副作用,不进行常量传播
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
default:
|
||||
if (DEBUG) {
|
||||
std::cout << "Unimplemented instruction kind in SCCP: " << inst->getKind() << std::endl;
|
||||
}
|
||||
newState = SSAPValue(LatticeVal::Bottom); // 未知指令保守处理为 Bottom
|
||||
break;
|
||||
}
|
||||
UpdateState(inst, newState);
|
||||
|
||||
// 特殊处理终结符指令,影响 CFG 边的可达性
|
||||
if (inst->isTerminator()) {
|
||||
if (inst->isBranch()) {
|
||||
|
||||
if (inst->isCondBr()) { // 使用 kCondBr
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(inst);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
|
||||
if (condition_is_true) {
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
|
||||
} else {
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
|
||||
}
|
||||
} else { // 条件是 Top 或 Bottom,两条路径都可能
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(inst);
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getBlock());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "New state: ";
|
||||
if (newState.state == LatticeVal::Top) {
|
||||
std::cout << "Top";
|
||||
} else if (newState.state == LatticeVal::Constant) {
|
||||
if (newState.constant_type == ValueType::Integer) {
|
||||
std::cout << "Const<int>(" << std::get<int>(newState.constantVal) << ")";
|
||||
} else {
|
||||
std::cout << "Const<float>(" << std::get<float>(newState.constantVal) << ")";
|
||||
}
|
||||
} else {
|
||||
std::cout << "Bottom";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 辅助函数:处理单条控制流边
|
||||
void SCCPContext::ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge) {
|
||||
BasicBlock *fromBB = edge.first;
|
||||
BasicBlock *toBB = edge.second;
|
||||
|
||||
// 检查目标块是否已经可执行
|
||||
bool wasAlreadyExecutable = executableBlocks.count(toBB) > 0;
|
||||
|
||||
// 标记目标块为可执行(如果还不是的话)
|
||||
MarkBlockExecutable(toBB);
|
||||
|
||||
// 如果目标块之前就已经可执行,那么需要重新处理其中的phi节点
|
||||
// 因为现在有新的前驱变为可执行,phi节点的值可能需要更新
|
||||
if (wasAlreadyExecutable) {
|
||||
for (auto &inst_ptr : toBB->getInstructions()) {
|
||||
if (dynamic_cast<PhiInst *>(inst_ptr.get())) {
|
||||
instWorkList.push(inst_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
// 如果目标块是新变为可执行的,MarkBlockExecutable已经添加了所有指令
|
||||
}
|
||||
|
||||
// 阶段1: 常量传播与折叠
|
||||
bool SCCPContext::PropagateConstants(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 初始化:所有值 Top,所有块不可执行
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
executableBlocks.erase(bb_ptr.get());
|
||||
for (auto &inst_ptr : bb_ptr->getInstructions()) {
|
||||
valueState[inst_ptr.get()] = SSAPValue(); // Top
|
||||
}
|
||||
}
|
||||
|
||||
// 初始化函数参数为Bottom(因为它们在编译时是未知的)
|
||||
for (auto arg : func->getArguments()) {
|
||||
valueState[arg] = SSAPValue(LatticeVal::Bottom);
|
||||
if (DEBUG) {
|
||||
std::cout << "Initializing function argument " << arg->getName() << " to Bottom" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 标记入口块为可执行
|
||||
if (!func->getBasicBlocks().empty()) {
|
||||
MarkBlockExecutable(func->getEntryBlock());
|
||||
}
|
||||
|
||||
// 主循环:标准的SCCP工作列表算法
|
||||
// 交替处理边工作列表和指令工作列表直到不动点
|
||||
while (!instWorkList.empty() || !edgeWorkList.empty()) {
|
||||
// 处理所有待处理的CFG边
|
||||
while (!edgeWorkList.empty()) {
|
||||
ProcessEdge(edgeWorkList.front());
|
||||
edgeWorkList.pop();
|
||||
}
|
||||
|
||||
// 处理所有待处理的指令
|
||||
while (!instWorkList.empty()) {
|
||||
Instruction *inst = instWorkList.front();
|
||||
instWorkList.pop();
|
||||
ProcessInstruction(inst);
|
||||
}
|
||||
}
|
||||
|
||||
// 应用常量替换和死代码消除
|
||||
std::vector<Instruction *> instsToDelete;
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (!executableBlocks.count(bb)) {
|
||||
// 整个块是死块,标记所有指令删除
|
||||
for (auto &inst_ptr : bb->getInstructions()) {
|
||||
instsToDelete.push_back(inst_ptr.get());
|
||||
}
|
||||
changed = true;
|
||||
continue;
|
||||
}
|
||||
for (auto it = bb->begin(); it != bb->end();) {
|
||||
Instruction *inst = it->get();
|
||||
SSAPValue ssaPVal = GetValueState(inst);
|
||||
|
||||
if (ssaPVal.state == LatticeVal::Constant) {
|
||||
ConstantValue *constVal = nullptr;
|
||||
if (ssaPVal.constant_type == ValueType::Integer) {
|
||||
constVal = ConstantInteger::get(std::get<int>(ssaPVal.constantVal));
|
||||
} else if (ssaPVal.constant_type == ValueType::Float) {
|
||||
constVal = ConstantFloating::get(std::get<float>(ssaPVal.constantVal));
|
||||
} else {
|
||||
constVal = UndefinedValue::get(inst->getType()); // 不应发生
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Replacing " << inst->getName() << " with constant ";
|
||||
if (ssaPVal.constant_type == ValueType::Integer)
|
||||
std::cout << std::get<int>(ssaPVal.constantVal);
|
||||
else
|
||||
std::cout << std::get<float>(ssaPVal.constantVal);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
inst->replaceAllUsesWith(constVal);
|
||||
instsToDelete.push_back(inst);
|
||||
++it;
|
||||
changed = true;
|
||||
} else {
|
||||
// 如果操作数是常量,直接替换为常量值(常量折叠)
|
||||
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
|
||||
Value *operand = inst->getOperand(i);
|
||||
SSAPValue opVal = GetValueState(operand);
|
||||
if (opVal.state == LatticeVal::Constant) {
|
||||
ConstantValue *constOp = nullptr;
|
||||
if (opVal.constant_type == ValueType::Integer) {
|
||||
constOp = ConstantInteger::get(std::get<int>(opVal.constantVal));
|
||||
} else if (opVal.constant_type == ValueType::Float) {
|
||||
constOp = ConstantFloating::get(std::get<float>(opVal.constantVal));
|
||||
} else {
|
||||
constOp = UndefinedValue::get(operand->getType());
|
||||
}
|
||||
|
||||
if (constOp != operand) {
|
||||
inst->setOperand(i, constOp);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 实际删除指令
|
||||
// TODO: 删除的逻辑需要考虑修改
|
||||
for (Instruction *inst : instsToDelete) {
|
||||
// 在尝试删除之前,先检查指令是否仍然附加到其父基本块。
|
||||
// 如果它已经没有父块,可能说明它已被其他方式处理或已处于无效状态。
|
||||
if (inst->getParent() != nullptr) {
|
||||
// 调用负责完整删除的函数,该函数应负责清除uses并将其从父块中移除。
|
||||
SysYIROptUtils::usedelete(inst);
|
||||
}
|
||||
else {
|
||||
// 指令已不属于任何父块,无需再次删除。
|
||||
if (DEBUG) {
|
||||
std::cerr << "Info: Instruction " << inst->getName() << " was already detached or is not in a parent block." << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 阶段2: 控制流简化
|
||||
bool SCCPContext::SimplifyControlFlow(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 重新确定可达块,因为 PropagateConstants 可能改变了分支条件
|
||||
std::unordered_set<BasicBlock *> newReachableBlocks = FindReachableBlocks(func);
|
||||
|
||||
// 移除不可达块
|
||||
std::vector<BasicBlock *> blocksToDelete;
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
if (bb_ptr.get() == func->getEntryBlock())
|
||||
continue; // 入口块不能删除
|
||||
if (newReachableBlocks.find(bb_ptr.get()) == newReachableBlocks.end()) {
|
||||
blocksToDelete.push_back(bb_ptr.get());
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
for (BasicBlock *bb : blocksToDelete) {
|
||||
RemoveDeadBlock(bb, func);
|
||||
}
|
||||
|
||||
// 简化分支指令
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (!newReachableBlocks.count(bb))
|
||||
continue; // 只处理可达块
|
||||
|
||||
Instruction *terminator = bb->terminator()->get();
|
||||
if (terminator->isBranch()) {
|
||||
|
||||
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
SimplifyBranch(branchInst, condition_is_true);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 查找所有可达的基本块 (基于常量条件)
|
||||
std::unordered_set<BasicBlock *> SCCPContext::FindReachableBlocks(Function *func) {
|
||||
std::unordered_set<BasicBlock *> reachable;
|
||||
std::queue<BasicBlock *> q;
|
||||
|
||||
if (func->getEntryBlock()) {
|
||||
q.push(func->getEntryBlock());
|
||||
reachable.insert(func->getEntryBlock());
|
||||
}
|
||||
|
||||
while (!q.empty()) {
|
||||
BasicBlock *currentBB = q.front();
|
||||
q.pop();
|
||||
|
||||
Instruction *terminator = currentBB->terminator()->get();
|
||||
if (!terminator)
|
||||
continue;
|
||||
|
||||
if (terminator->isBranch()) {
|
||||
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
|
||||
if (condition_is_true) {
|
||||
BasicBlock *trueBlock = branchInst->getThenBlock();
|
||||
if (reachable.find(trueBlock) == reachable.end()) {
|
||||
reachable.insert(trueBlock);
|
||||
q.push(trueBlock);
|
||||
}
|
||||
} else {
|
||||
BasicBlock *falseBlock = branchInst->getElseBlock();
|
||||
if (reachable.find(falseBlock) == reachable.end()) {
|
||||
reachable.insert(falseBlock);
|
||||
q.push(falseBlock);
|
||||
}
|
||||
}
|
||||
} else { // 条件是 Top 或 Bottom,两条路径都可达
|
||||
for (auto succ : branchInst->getSuccessors()) {
|
||||
if (reachable.find(succ) == reachable.end()) {
|
||||
reachable.insert(succ);
|
||||
q.push(succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
|
||||
BasicBlock *targetBlock = branchInst->getBlock();
|
||||
if (reachable.find(targetBlock) == reachable.end()) {
|
||||
reachable.insert(targetBlock);
|
||||
q.push(targetBlock);
|
||||
}
|
||||
}
|
||||
} else if (terminator->isReturn() || terminator->isUnreachable()) {
|
||||
// ReturnInst 没有后继,不需要处理
|
||||
// UnreachableInst 也没有后继,不需要处理
|
||||
}
|
||||
}
|
||||
return reachable;
|
||||
}
|
||||
|
||||
// 移除死块
|
||||
void SCCPContext::RemoveDeadBlock(BasicBlock *bb, Function *func) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Removing dead block: " << bb->getName() << std::endl;
|
||||
}
|
||||
// 首先更新其所有前驱的终结指令,移除指向死块的边
|
||||
std::vector<BasicBlock *> preds_to_update;
|
||||
for (auto &pred : bb->getPredecessors()) {
|
||||
if (pred != nullptr) { // 检查是否为空指针
|
||||
preds_to_update.push_back(pred);
|
||||
}
|
||||
}
|
||||
for (BasicBlock *pred : preds_to_update) {
|
||||
if (executableBlocks.count(pred)) {
|
||||
UpdateTerminator(pred, bb);
|
||||
}
|
||||
}
|
||||
|
||||
// 移除其后继的 Phi 节点的入边
|
||||
std::vector<BasicBlock *> succs_to_update;
|
||||
for (auto succ : bb->getSuccessors()) {
|
||||
succs_to_update.push_back(succ);
|
||||
}
|
||||
for (BasicBlock *succ : succs_to_update) {
|
||||
RemovePhiIncoming(succ, bb);
|
||||
succ->removePredecessor(bb);
|
||||
}
|
||||
|
||||
func->removeBasicBlock(bb); // 从函数中移除基本块
|
||||
}
|
||||
|
||||
// 简化分支(将条件分支替换为无条件分支)
|
||||
void SCCPContext::SimplifyBranch(CondBrInst *brInst, bool condVal) {
|
||||
BasicBlock *parentBB = brInst->getParent();
|
||||
BasicBlock *trueBlock = brInst->getThenBlock();
|
||||
BasicBlock *falseBlock = brInst->getElseBlock();
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Simplifying branch in " << parentBB->getName() << ": cond is " << (condVal ? "true" : "false")
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
builder->setPosition(parentBB, parentBB->findInstIterator(brInst));
|
||||
if (condVal) { // 条件为真,跳转到真分支
|
||||
builder->createUncondBrInst(trueBlock); // 插入无条件分支 kBr
|
||||
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
|
||||
parentBB->removeSuccessor(falseBlock);
|
||||
falseBlock->removePredecessor(parentBB);
|
||||
RemovePhiIncoming(falseBlock, parentBB);
|
||||
} else { // 条件为假,跳转到假分支
|
||||
builder->createUncondBrInst(falseBlock); // 插入无条件分支 kBr
|
||||
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
|
||||
parentBB->removeSuccessor(trueBlock);
|
||||
trueBlock->removePredecessor(parentBB);
|
||||
RemovePhiIncoming(trueBlock, parentBB);
|
||||
}
|
||||
}
|
||||
|
||||
// 更新前驱块的终结指令(当一个后继块被移除时)
|
||||
void SCCPContext::UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc) {
|
||||
Instruction *terminator = predBB->terminator()->get();
|
||||
if (!terminator)
|
||||
return;
|
||||
|
||||
if (terminator->isBranch()) {
|
||||
if (terminator->isCondBr()) { // 如果是条件分支
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
if (branchInst->getThenBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating cond br in " << predBB->getName() << ": True block (" << removedSucc->getName()
|
||||
<< ") removed. Converting to Br to " << branchInst->getElseBlock()->getName() << std::endl;
|
||||
}
|
||||
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
|
||||
builder->createUncondBrInst(branchInst->getElseBlock());
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
} else if (branchInst->getElseBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating cond br in " << predBB->getName() << ": False block (" << removedSucc->getName()
|
||||
<< ") removed. Converting to Br to " << branchInst->getThenBlock()->getName() << std::endl;
|
||||
}
|
||||
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
|
||||
builder->createUncondBrInst(branchInst->getThenBlock());
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
|
||||
if (branchInst->getBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating unconditional br in " << predBB->getName() << ": Target block ("
|
||||
<< removedSucc->getName() << ") removed. Replacing with Unreachable." << std::endl;
|
||||
}
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
builder->setPosition(predBB, predBB->end());
|
||||
builder->createUnreachableInst();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 移除 Phi 节点的入边(当其前驱块被移除时)
|
||||
void SCCPContext::RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred) { // 修正 removedPred 类型
|
||||
std::vector<Instruction *> insts_to_check;
|
||||
for (auto &inst_ptr : phiParentBB->getInstructions()) {
|
||||
insts_to_check.push_back(inst_ptr.get());
|
||||
}
|
||||
|
||||
for (Instruction *inst : insts_to_check) {
|
||||
if (auto phi = dynamic_cast<PhiInst *>(inst)) {
|
||||
phi->removeIncomingBlock(removedPred);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 运行 SCCP 优化
|
||||
void SCCPContext::run(Function *func, AnalysisManager &AM) {
|
||||
bool changed_constant_propagation = PropagateConstants(func);
|
||||
bool changed_control_flow = SimplifyControlFlow(func);
|
||||
|
||||
// 如果任何一个阶段修改了 IR,标记分析结果为失效
|
||||
if (changed_constant_propagation || changed_control_flow) {
|
||||
// AM.invalidate(); // 假设有这样的方法来使所有分析结果失效
|
||||
}
|
||||
}
|
||||
|
||||
// SCCP Pass methods
|
||||
bool SCCP::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Running SCCP on function: " << F->getName() << std::endl;
|
||||
}
|
||||
SCCPContext context(builder);
|
||||
context.run(F, AM);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SCCP::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// analysisInvalidations.insert(nullptr); // 表示使所有默认分析失效
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID); // 支配树可能受影响
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID); // 活跃性分析很可能失效
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1,12 +1,12 @@
|
||||
#include "SysYIRCFGOpt.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <queue> // 引入队列,SysYDelNoPreBLock需要
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <queue> // 引入队列,SysYDelNoPreBLock需要
|
||||
|
||||
namespace sysy {
|
||||
|
||||
@@ -18,6 +18,7 @@ void *SysYBlockMergePass::ID = (void *)&SysYBlockMergePass::ID;
|
||||
void *SysYAddReturnPass::ID = (void *)&SysYAddReturnPass::ID;
|
||||
void *SysYCondBr2BrPass::ID = (void *)&SysYCondBr2BrPass::ID;
|
||||
|
||||
|
||||
// ======================================================================
|
||||
// SysYCFGOptUtils: 辅助工具类,包含实际的CFG优化逻辑
|
||||
// ======================================================================
|
||||
@@ -25,42 +26,40 @@ void *SysYCondBr2BrPass::ID = (void *)&SysYCondBr2BrPass::ID;
|
||||
// 删除br后的无用指令
|
||||
bool SysYCFGOptUtils::SysYDelInstAfterBr(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
bool Branch = false;
|
||||
auto &instructions = basicBlock->getInstructions();
|
||||
auto Branchiter = instructions.end();
|
||||
for (auto iter = instructions.begin(); iter != instructions.end(); ++iter) {
|
||||
if ((*iter)->isTerminator()) {
|
||||
if ((*iter)->isTerminator()){
|
||||
Branch = true;
|
||||
Branchiter = iter;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (Branchiter != instructions.end())
|
||||
++Branchiter;
|
||||
if (Branchiter != instructions.end()) ++Branchiter;
|
||||
while (Branchiter != instructions.end()) {
|
||||
changed = true;
|
||||
Branchiter = SysYIROptUtils::usedelete(Branchiter); // 删除指令
|
||||
Branchiter = instructions.erase(Branchiter);
|
||||
}
|
||||
|
||||
if (Branch) { // 更新前驱后继关系
|
||||
auto thelastinstinst = basicBlock->terminator();
|
||||
|
||||
if (Branch) { // 更新前驱后继关系
|
||||
auto thelastinstinst = basicBlock->getInstructions().end();
|
||||
--thelastinstinst;
|
||||
auto &Successors = basicBlock->getSuccessors();
|
||||
for (auto iterSucc = Successors.begin(); iterSucc != Successors.end();) {
|
||||
(*iterSucc)->removePredecessor(basicBlock.get());
|
||||
basicBlock->removeSuccessor(*iterSucc);
|
||||
}
|
||||
if (thelastinstinst->get()->isUnconditional()) {
|
||||
auto brinst = dynamic_cast<UncondBrInst *>(thelastinstinst->get());
|
||||
BasicBlock *branchBlock = dynamic_cast<BasicBlock *>(brinst->getBlock());
|
||||
BasicBlock* branchBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(0));
|
||||
basicBlock->addSuccessor(branchBlock);
|
||||
branchBlock->addPredecessor(basicBlock.get());
|
||||
} else if (thelastinstinst->get()->isConditional()) {
|
||||
auto brinst = dynamic_cast<CondBrInst *>(thelastinstinst->get());
|
||||
BasicBlock *thenBlock = dynamic_cast<BasicBlock *>(brinst->getThenBlock());
|
||||
BasicBlock *elseBlock = dynamic_cast<BasicBlock *>(brinst->getElseBlock());
|
||||
BasicBlock* thenBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(1));
|
||||
BasicBlock* elseBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(2));
|
||||
basicBlock->addSuccessor(thenBlock);
|
||||
basicBlock->addSuccessor(elseBlock);
|
||||
thenBlock->addPredecessor(basicBlock.get());
|
||||
@@ -76,48 +75,38 @@ bool SysYCFGOptUtils::SysYDelInstAfterBr(Function *func) {
|
||||
bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
for (auto blockiter = func->getBasicBlocks().begin(); blockiter != func->getBasicBlocks().end();) {
|
||||
// 检查当前块是是不是entry块
|
||||
if( blockiter->get() == func->getEntryBlock() ) {
|
||||
blockiter++;
|
||||
continue; // 跳过入口块
|
||||
}
|
||||
for (auto blockiter = func->getBasicBlocks().begin();
|
||||
blockiter != func->getBasicBlocks().end();) {
|
||||
if (blockiter->get()->getNumSuccessors() == 1) {
|
||||
// 如果当前块只有一个后继块
|
||||
// 且后继块只有一个前驱块
|
||||
// 则将当前块和后继块合并
|
||||
if (((blockiter->get())->getSuccessors()[0])->getNumPredecessors() == 1) {
|
||||
// std::cout << "merge block: " << blockiter->get()->getName() << std::endl;
|
||||
BasicBlock *block = blockiter->get();
|
||||
BasicBlock *nextBlock = blockiter->get()->getSuccessors()[0];
|
||||
BasicBlock* block = blockiter->get();
|
||||
BasicBlock* nextBlock = blockiter->get()->getSuccessors()[0];
|
||||
// auto nextarguments = nextBlock->getArguments();
|
||||
// 删除block的br指令
|
||||
// 删除br指令
|
||||
if (block->getNumInstructions() != 0) {
|
||||
auto thelastinstinst = block->terminator();
|
||||
auto thelastinstinst = block->end();
|
||||
(--thelastinstinst);
|
||||
if (thelastinstinst->get()->isUnconditional()) {
|
||||
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
} else if (thelastinstinst->get()->isConditional()) {
|
||||
// 按道理不会走到这个分支
|
||||
// 如果是条件分支,查看then else是否相同
|
||||
auto brinst = dynamic_cast<CondBrInst *>(thelastinstinst->get());
|
||||
if (brinst->getThenBlock() == brinst->getElseBlock()) {
|
||||
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
|
||||
}
|
||||
else{
|
||||
assert(false && "SysYBlockMerge: unexpected conditional branch with different then and else blocks");
|
||||
// 如果是条件分支,判断条件是否相同,主要优化相同布尔表达式
|
||||
if (thelastinstinst->get()->getOperand(1)->getName() == thelastinstinst->get()->getOperand(1)->getName()) {
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 将后继块的指令移动到当前块
|
||||
// 并将后继块的父指针改为当前块
|
||||
for (auto institer = nextBlock->begin(); institer != nextBlock->end();) {
|
||||
// institer->get()->setParent(block);
|
||||
// block->getInstructions().emplace_back(institer->release());
|
||||
// 用usedelete删除会导致use关系被删除我只希望移动指令到当前块
|
||||
// institer = SysYIROptUtils::usedelete(institer);
|
||||
// institer = nextBlock->getInstructions().erase(institer);
|
||||
institer = nextBlock->moveInst(institer, block->getInstructions().end(), block);
|
||||
|
||||
institer->get()->setParent(block);
|
||||
block->getInstructions().emplace_back(institer->release());
|
||||
institer = nextBlock->getInstructions().erase(institer);
|
||||
}
|
||||
// 更新前驱后继关系,类似树节点操作
|
||||
block->removeSuccessor(nextBlock);
|
||||
@@ -148,433 +137,323 @@ bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
|
||||
|
||||
// 删除无前驱块,兼容SSA后的处理
|
||||
bool SysYCFGOptUtils::SysYDelNoPreBLock(Function *func) {
|
||||
bool changed = false; // 标记是否有基本块被删除
|
||||
std::set<BasicBlock *> reachableBlocks; // 用于存储所有可达的基本块
|
||||
std::queue<BasicBlock *> blockQueue; // BFS 遍历队列
|
||||
|
||||
BasicBlock *entryBlock = func->getEntryBlock();
|
||||
if (entryBlock) { // 确保函数有入口块
|
||||
reachableBlocks.insert(entryBlock); // 将入口块标记为可达
|
||||
blockQueue.push(entryBlock); // 入口块入队
|
||||
}
|
||||
// 如果没有入口块(比如一个空函数),则没有块是可达的,所有块都将被删除。
|
||||
|
||||
while (!blockQueue.empty()) { // BFS 遍历:只要队列不空
|
||||
BasicBlock *currentBlock = blockQueue.front();
|
||||
blockQueue.pop(); // 取出当前块
|
||||
|
||||
for (auto &succ : currentBlock->getSuccessors()) { // 遍历当前块的所有后继
|
||||
// 如果后继块不在 reachableBlocks 中(即尚未被访问过)
|
||||
if (reachableBlocks.find(succ) == reachableBlocks.end()) {
|
||||
reachableBlocks.insert(succ); // 标记为可达
|
||||
blockQueue.push(succ); // 入队,以便继续遍历
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<BasicBlock *> blocksToDelete; // 用于存储所有不可达的基本块
|
||||
|
||||
for (auto &blockPtr : func->getBasicBlocks()) {
|
||||
BasicBlock *block = blockPtr.get();
|
||||
// 如果当前块不在 reachableBlocks 集合中,说明它是不可达的
|
||||
if (reachableBlocks.find(block) == reachableBlocks.end()) {
|
||||
blocksToDelete.push_back(block); // 将其加入待删除列表
|
||||
changed = true; // 只要找到一个不可达块,就说明函数发生了改变
|
||||
}
|
||||
}
|
||||
|
||||
for (BasicBlock *unreachableBlock : blocksToDelete) {
|
||||
// 遍历不可达块中的所有指令,并删除它们
|
||||
for (auto instIter = unreachableBlock->getInstructions().begin();
|
||||
instIter != unreachableBlock->getInstructions().end();) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
}
|
||||
}
|
||||
|
||||
for (BasicBlock *unreachableBlock : blocksToDelete) {
|
||||
for (BasicBlock *succBlock : unreachableBlock->getSuccessors()) {
|
||||
// 只有当后继块自身是可达的(没有被删除)时才需要处理
|
||||
if (reachableBlocks.count(succBlock)) {
|
||||
for (auto &phiInstPtr : succBlock->getInstructions()) {
|
||||
// Phi 指令总是在基本块的开头。一旦遇到非 Phi 指令即可停止。
|
||||
if (phiInstPtr->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 将这个 Phi 节点中来自不可达前驱(unreachableBlock)的输入参数删除
|
||||
dynamic_cast<PhiInst *>(phiInstPtr.get())->removeIncomingBlock(unreachableBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end();) {
|
||||
BasicBlock *currentBlock = blockIter->get();
|
||||
// 如果当前块不在可达块集合中,则将其从函数中移除
|
||||
if (reachableBlocks.find(currentBlock) == reachableBlocks.end()) {
|
||||
// func->removeBasicBlock 应该返回下一个有效的迭代器
|
||||
func->removeBasicBlock((blockIter++)->get());
|
||||
} else {
|
||||
blockIter++; // 如果可达,则移动到下一个块
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
|
||||
|
||||
bool changed = false;
|
||||
|
||||
// 步骤 1: 识别并映射所有符合“空块”定义的基本块及其目标后继
|
||||
// 使用 std::map 来存储 <空块, 空块跳转目标>
|
||||
// 这样可以处理空块链:A -> B -> C,如果 B 是空块,A 应该跳到 C
|
||||
std::map<BasicBlock *, BasicBlock *> emptyBlockRedirectMap;
|
||||
|
||||
// 为了避免在遍历 func->getBasicBlocks() 时修改它导致迭代器失效,
|
||||
// 我们先收集所有的基本块。
|
||||
std::vector<BasicBlock *> allBlocks;
|
||||
for (auto &blockPtr : func->getBasicBlocks()) {
|
||||
allBlocks.push_back(blockPtr.get());
|
||||
for (auto &block : func->getBasicBlocks()) {
|
||||
block->setreachableFalse();
|
||||
}
|
||||
|
||||
for (BasicBlock *block : allBlocks) {
|
||||
// 入口块通常不应该被认为是空块并删除,除非它没有实际指令且只有一个后继,
|
||||
// 但为了安全起见,通常会跳过入口块的删除。
|
||||
// 如果入口块是空的,它应该被合并到它的后继,但处理起来更复杂,这里先不处理入口块为空的情况
|
||||
if (block == func->getEntryBlock()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 检查基本块是否是空的:除了Phi指令外,只包含一个终止指令 (Terminator)
|
||||
// 且该终止指令必须是无条件跳转。
|
||||
// 空块必须只有一个后继才能被简化
|
||||
if (block->getNumSuccessors() == 1) {
|
||||
bool hasNonPhiNonTerminator = false;
|
||||
// 遍历除了最后一个指令之外的指令
|
||||
for (auto instIter = block->getInstructions().begin(); instIter != block->getInstructions().end();) {
|
||||
// 如果是终止指令(例如 br, ret),且不是最后一个指令,则该块有问题
|
||||
if ((*instIter)->isTerminator() && instIter != block->terminator()) {
|
||||
hasNonPhiNonTerminator = true;
|
||||
break;
|
||||
}
|
||||
// 如果不是 Phi 指令且不是终止指令
|
||||
if (!(*instIter)->isPhi() && !(*instIter)->isTerminator()) {
|
||||
hasNonPhiNonTerminator = true;
|
||||
break;
|
||||
}
|
||||
++instIter;
|
||||
if (!hasNonPhiNonTerminator &&
|
||||
instIter == block->getInstructions().end()) { // 如果块中只有 Phi 指令和一个 Terminator
|
||||
// 确保最后一个指令是无条件跳转
|
||||
auto lastInst = block->terminator()->get();
|
||||
if (lastInst && lastInst->isUnconditional()) {
|
||||
emptyBlockRedirectMap[block] = block->getSuccessors().front();
|
||||
}
|
||||
}
|
||||
// 对函数基本块做一个拓扑排序,排查不可达基本块
|
||||
auto entryBlock = func->getEntryBlock();
|
||||
entryBlock->setreachableTrue();
|
||||
std::queue<BasicBlock *> blockqueue;
|
||||
blockqueue.push(entryBlock);
|
||||
while (!blockqueue.empty()) {
|
||||
auto block = blockqueue.front();
|
||||
blockqueue.pop();
|
||||
for (auto &succ : block->getSuccessors()) {
|
||||
if (!succ->getreachable()) {
|
||||
succ->setreachableTrue();
|
||||
blockqueue.push(succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 步骤 2: 遍历 emptyBlockRedirectMap,处理空块链
|
||||
// 确保每个空块都直接重定向到其最终的非空后继块
|
||||
for (auto const &[emptyBlock, directSucc] : emptyBlockRedirectMap) {
|
||||
BasicBlock *targetBlock = directSucc;
|
||||
// 沿着空块链一直找到最终的非空块目标
|
||||
while (emptyBlockRedirectMap.count(targetBlock)) {
|
||||
targetBlock = emptyBlockRedirectMap[targetBlock];
|
||||
}
|
||||
emptyBlockRedirectMap[emptyBlock] = targetBlock; // 更新映射到最终目标
|
||||
}
|
||||
|
||||
// 步骤 3: 遍历所有基本块,重定向其终止指令,绕过空块
|
||||
// 注意:这里需要再次遍历所有块,包括可能成为新目标的块
|
||||
for (BasicBlock *currentBlock : allBlocks) {
|
||||
// 如果 currentBlock 本身就是个空块,它会通过其前驱的重定向被处理,这里跳过
|
||||
if (emptyBlockRedirectMap.count(currentBlock)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 获取当前块的最后一个指令(终止指令)
|
||||
if (currentBlock->getInstructions().empty()) {
|
||||
// 理论上,除了入口块和可能被合并的空块外,所有块都应该有终止指令
|
||||
// 如果这里碰到空块,可能是逻辑错误或者需要特殊处理
|
||||
continue;
|
||||
}
|
||||
|
||||
std::function<Value *(Value *, BasicBlock *)> getUltimateSourceValue = [&](Value *val, BasicBlock *currentDefBlock) -> Value * {
|
||||
|
||||
if(!dynamic_cast<Instruction *>(val)) {
|
||||
// 如果 val 不是指令,直接返回它
|
||||
return val;
|
||||
}
|
||||
Instruction *inst = dynamic_cast<Instruction *>(val);
|
||||
// 如果定义指令不在任何空块中,它就是最终来源
|
||||
if (!emptyBlockRedirectMap.count(currentDefBlock)) {
|
||||
return val;
|
||||
}
|
||||
|
||||
// 如果是 Phi 指令,且它在空块中,则继续追溯其在空块链中前驱的传入值
|
||||
if (inst->getKind() == Instruction::kPhi) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(inst);
|
||||
// 查找哪个前驱是空块链中的上一个块
|
||||
for (size_t i = 0; i < phi->getNumOperands(); i += 2) {
|
||||
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phi->getOperand(i + 1));
|
||||
// 检查 incomingBlock 是否是当前空块的前驱,且也在空块映射中(或就是 P)
|
||||
// 找到在空块链中导致 currentDefBlock 的那个前驱块
|
||||
if (emptyBlockRedirectMap.count(incomingBlock) || incomingBlock == currentBlock) {
|
||||
// 递归追溯该传入值
|
||||
return getUltimateSourceValue(phi->getValfromBlk(incomingBlock), incomingBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 如果是其他指令或者无法追溯到Phi链,则认为它在空块中产生,无法安全传播,返回null或原值
|
||||
// 在严格的空块定义下,除了Phi和Terminator,不应有其他指令产生值。
|
||||
return val; // Fallback: If not a Phi, or unable to trace, return itself (may be dangling)
|
||||
};
|
||||
|
||||
auto lastInst = currentBlock->getInstructions().back().get();
|
||||
|
||||
if (lastInst->isUnconditional()) { // 无条件跳转
|
||||
UncondBrInst *brInst = dynamic_cast<UncondBrInst *>(lastInst);
|
||||
BasicBlock *oldTarget = dynamic_cast<BasicBlock *>(brInst->getBlock()); // 原始跳转目标
|
||||
|
||||
if (emptyBlockRedirectMap.count(oldTarget)) { // 如果目标是空块
|
||||
BasicBlock *newTarget = emptyBlockRedirectMap[oldTarget]; // 获取最终目标
|
||||
|
||||
// 更新 CFG 关系
|
||||
currentBlock->removeSuccessor(oldTarget);
|
||||
oldTarget->removePredecessor(currentBlock);
|
||||
|
||||
brInst->replaceOperand(0, newTarget); // 更新跳转指令的操作数
|
||||
currentBlock->addSuccessor(newTarget);
|
||||
newTarget->addPredecessor(currentBlock);
|
||||
|
||||
changed = true; // 标记发生改变
|
||||
|
||||
for (auto &phiInstPtr : newTarget->getInstructions()) {
|
||||
if (phiInstPtr->getKind() == Instruction::kPhi) {
|
||||
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
|
||||
BasicBlock *actualEmptyPredecessorOfS = nullptr;
|
||||
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
|
||||
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
|
||||
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
|
||||
emptyBlockRedirectMap[incomingBlock] == newTarget) {
|
||||
actualEmptyPredecessorOfS = incomingBlock;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (actualEmptyPredecessorOfS) {
|
||||
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
|
||||
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
|
||||
|
||||
// 追溯这个值,找到它在非空块中的最终来源
|
||||
// currentBlock 是 P
|
||||
// oldTarget 是 E1 (链的起点)
|
||||
// actualEmptyPredecessorOfS 是 En (链的终点,S 的前驱)
|
||||
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
|
||||
|
||||
// 替换 Phi 节点的传入块和传入值
|
||||
if (ultimateSourceValue) { // 确保成功追溯到有效来源
|
||||
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
} else {
|
||||
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
|
||||
// 无法追溯到有效来源,这可能是个错误或特殊情况
|
||||
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
|
||||
phiInst->getValfromBlk(actualEmptyPredecessorOfS);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (lastInst->getKind() == Instruction::kCondBr) { // 条件跳转
|
||||
CondBrInst *condBrInst = dynamic_cast<CondBrInst *>(lastInst);
|
||||
BasicBlock *oldThenTarget = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
|
||||
BasicBlock *oldElseTarget = dynamic_cast<BasicBlock *>(condBrInst->getElseBlock());
|
||||
|
||||
bool thenPathChanged = false;
|
||||
bool elsePathChanged = false;
|
||||
|
||||
// 处理 Then 分支
|
||||
if (emptyBlockRedirectMap.count(oldThenTarget)) {
|
||||
BasicBlock *newThenTarget = emptyBlockRedirectMap[oldThenTarget];
|
||||
condBrInst->replaceOperand(1, newThenTarget); // 更新跳转指令操作数
|
||||
|
||||
currentBlock->removeSuccessor(oldThenTarget);
|
||||
oldThenTarget->removePredecessor(currentBlock);
|
||||
currentBlock->addSuccessor(newThenTarget);
|
||||
newThenTarget->addPredecessor(currentBlock);
|
||||
thenPathChanged = true;
|
||||
changed = true;
|
||||
|
||||
// 处理新 Then 目标块中的 Phi 指令
|
||||
// for (auto &phiInstPtr : newThenTarget->getInstructions()) {
|
||||
// if (phiInstPtr->getKind() == Instruction::kPhi) {
|
||||
// dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(oldThenTarget);
|
||||
// } else {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
for (auto &phiInstPtr : newThenTarget->getInstructions()) {
|
||||
if (phiInstPtr->getKind() == Instruction::kPhi) {
|
||||
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
|
||||
BasicBlock *actualEmptyPredecessorOfS = nullptr;
|
||||
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
|
||||
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
|
||||
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
|
||||
emptyBlockRedirectMap[incomingBlock] == newThenTarget) {
|
||||
actualEmptyPredecessorOfS = incomingBlock;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (actualEmptyPredecessorOfS) {
|
||||
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
|
||||
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
|
||||
|
||||
// 追溯这个值,找到它在非空块中的最终来源
|
||||
// currentBlock 是 P
|
||||
// oldTarget 是 E1 (链的起点)
|
||||
// actualEmptyPredecessorOfS 是 En (链的终点,S 的前驱)
|
||||
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
|
||||
|
||||
// 替换 Phi 节点的传入块和传入值
|
||||
if (ultimateSourceValue) { // 确保成功追溯到有效来源
|
||||
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
} else {
|
||||
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
|
||||
// 无法追溯到有效来源,这可能是个错误或特殊情况
|
||||
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
|
||||
phiInst->removeIncomingBlock(actualEmptyPredecessorOfS);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// 处理 Else 分支
|
||||
if (emptyBlockRedirectMap.count(oldElseTarget)) {
|
||||
BasicBlock *newElseTarget = emptyBlockRedirectMap[oldElseTarget];
|
||||
condBrInst->replaceOperand(2, newElseTarget); // 更新跳转指令操作数
|
||||
|
||||
currentBlock->removeSuccessor(oldElseTarget);
|
||||
oldElseTarget->removePredecessor(currentBlock);
|
||||
currentBlock->addSuccessor(newElseTarget);
|
||||
newElseTarget->addPredecessor(currentBlock);
|
||||
elsePathChanged = true;
|
||||
changed = true;
|
||||
|
||||
// 处理新 Else 目标块中的 Phi 指令
|
||||
// for (auto &phiInstPtr : newElseTarget->getInstructions()) {
|
||||
// if (phiInstPtr->getKind() == Instruction::kPhi) {
|
||||
// dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(oldElseTarget);
|
||||
// } else {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
for (auto &phiInstPtr : newElseTarget->getInstructions()) {
|
||||
if (phiInstPtr->getKind() == Instruction::kPhi) {
|
||||
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
|
||||
BasicBlock *actualEmptyPredecessorOfS = nullptr;
|
||||
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
|
||||
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
|
||||
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
|
||||
emptyBlockRedirectMap[incomingBlock] == newElseTarget) {
|
||||
actualEmptyPredecessorOfS = incomingBlock;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (actualEmptyPredecessorOfS) {
|
||||
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
|
||||
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
|
||||
|
||||
// 追溯这个值,找到它在非空块中的最终来源
|
||||
// currentBlock 是 P
|
||||
// oldTarget 是 E1 (链的起点)
|
||||
// actualEmptyPredecessorOfS 是 En (链的终点,S 的前驱)
|
||||
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
|
||||
|
||||
// 替换 Phi 节点的传入块和传入值
|
||||
if (ultimateSourceValue) { // 确保成功追溯到有效来源
|
||||
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
|
||||
} else {
|
||||
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
|
||||
// 无法追溯到有效来源,这可能是个错误或特殊情况
|
||||
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
|
||||
phiInst->removeIncomingBlock(actualEmptyPredecessorOfS);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 额外处理:如果条件跳转的两个分支现在指向同一个块,则可以简化为无条件跳转
|
||||
if (condBrInst->getThenBlock() == condBrInst->getElseBlock()) {
|
||||
BasicBlock *commonTarget = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
|
||||
SysYIROptUtils::usedelete(lastInst); // 删除旧的条件跳转指令
|
||||
pBuilder->setPosition(currentBlock, currentBlock->end());
|
||||
pBuilder->createUncondBrInst(commonTarget); // 插入新的无条件跳转指令
|
||||
|
||||
// 更安全地更新 CFG 关系
|
||||
std::set<BasicBlock *> currentSuccessors;
|
||||
currentSuccessors.insert(oldThenTarget);
|
||||
currentSuccessors.insert(oldElseTarget);
|
||||
|
||||
// 移除旧的后继关系
|
||||
for (BasicBlock *succ : currentSuccessors) {
|
||||
currentBlock->removeSuccessor(succ);
|
||||
succ->removePredecessor(currentBlock);
|
||||
}
|
||||
// 添加新的后继关系
|
||||
currentBlock->addSuccessor(commonTarget);
|
||||
commonTarget->addPredecessor(currentBlock);
|
||||
|
||||
changed = true;
|
||||
// 删除不可达基本块指令
|
||||
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end(); blockIter++) {
|
||||
if (!blockIter->get()->getreachable()) {
|
||||
for (auto instIter = blockIter->get()->getInstructions().begin();
|
||||
instIter != blockIter->get()->getInstructions().end();) {
|
||||
SysYIROptUtils::usedelete(instIter->get());
|
||||
instIter = blockIter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 步骤 4: 真正地删除空基本块
|
||||
// 注意:只能在所有跳转和 Phi 指令都更新完毕后才能删除这些块
|
||||
|
||||
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end();) {
|
||||
BasicBlock *currentBlock = blockIter->get();
|
||||
if (emptyBlockRedirectMap.count(currentBlock)) { // 如果在空块映射中
|
||||
// 入口块不应该被删除,即使它符合空块定义,因为函数需要一个入口
|
||||
if (currentBlock == func->getEntryBlock()) {
|
||||
++blockIter;
|
||||
continue;
|
||||
if (!blockIter->get()->getreachable()) {
|
||||
for (auto succblock : blockIter->get()->getSuccessors()) {
|
||||
for (auto &phiinst : succblock->getInstructions()) {
|
||||
if (phiinst->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法正确地删除对应于被删除基本块的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(blockIter->get());
|
||||
}
|
||||
}
|
||||
|
||||
// 在删除块之前,确保其内部指令被正确删除(虽然这类块指令很少)
|
||||
for (auto instIter = currentBlock->getInstructions().begin();
|
||||
instIter != currentBlock->getInstructions().end();) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
}
|
||||
|
||||
// 移除块
|
||||
// 删除不可达基本块,注意迭代器不可达问题
|
||||
func->removeBasicBlock((blockIter++)->get());
|
||||
changed = true;
|
||||
} else {
|
||||
++blockIter;
|
||||
blockIter++;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 删除空块
|
||||
bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
// 收集不可达基本块
|
||||
// 这里的不可达基本块是指没有实际指令的基本块
|
||||
// 当一个基本块没有实际指令例如只有phi指令和一个uncondbr指令时,也会被视作不可达
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
std::map<sysy::BasicBlock *, BasicBlock *> EmptyBlocks;
|
||||
// 空块儿和后继的基本块的映射
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
if (basicBlock->getNumInstructions() == 0) {
|
||||
if (basicBlock->getNumSuccessors() == 1) {
|
||||
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
|
||||
}
|
||||
}
|
||||
else{
|
||||
// 如果只有phi指令和一个uncondbr。(phi)*(uncondbr)?
|
||||
// 判断除了最后一个指令之外是不是只有phi指令
|
||||
bool onlyPhi = true;
|
||||
for (auto &inst : basicBlock->getInstructions()) {
|
||||
if (!inst->isPhi() && !inst->isUnconditional()) {
|
||||
onlyPhi = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(onlyPhi && basicBlock->getNumSuccessors() == 1) // 确保有后继且只有一个
|
||||
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
|
||||
}
|
||||
}
|
||||
// 更新基本块信息,增加必要指令
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
// 把空块转换成只有跳转指令的不可达块 (这段逻辑在优化遍中可能需要调整,这里是原样保留)
|
||||
// 通常,DelEmptyBlock 应该在BlockMerge之后运行,如果存在完全空块,它会尝试填充一个Br指令。
|
||||
// 但是,它主要目的是重定向跳转。
|
||||
if (distance(basicBlock->begin(), basicBlock->end()) == 0) {
|
||||
if (basicBlock->getNumSuccessors() == 0) {
|
||||
continue;
|
||||
}
|
||||
if (basicBlock->getNumSuccessors() > 1) {
|
||||
// 如果一个空块有多个后继,说明CFG结构有问题或者需要特殊处理,这里简单assert
|
||||
assert(false && "Empty block with multiple successors found during SysYDelEmptyBlock");
|
||||
}
|
||||
// 这里的逻辑有点问题,如果一个块是空的,且只有一个后继,应该直接跳转到后继。
|
||||
// 如果这个块最终被删除了,那么其前驱也需要重定向。
|
||||
// 这个循环的目的是重定向现有的跳转指令,而不是创建新的。
|
||||
// 所以下面的逻辑才是核心。
|
||||
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
|
||||
continue;
|
||||
}
|
||||
|
||||
auto thelastinst = basicBlock->getInstructions().end();
|
||||
--thelastinst;
|
||||
|
||||
// 根据br指令传递的后继块信息,跳过空块链
|
||||
if (thelastinst->get()->isUnconditional()) {
|
||||
BasicBlock* OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
BasicBlock *thelastBlockOld = nullptr;
|
||||
// 如果空块链表为多个块
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
thelastinst->get()->replaceOperand(0, EmptyBlocks[thelastBlockOld]);
|
||||
}
|
||||
|
||||
// 如果有重定向发生
|
||||
if (thelastBlockOld != nullptr) {
|
||||
basicBlock->removeSuccessor(OldBrBlock);
|
||||
OldBrBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (thelastinst->get()->getKind() == Instruction::kCondBr) {
|
||||
auto OldThenBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
auto OldElseBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
|
||||
bool thenChanged = false;
|
||||
bool elseChanged = false;
|
||||
|
||||
|
||||
BasicBlock *thelastBlockOld = nullptr;
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
thelastinst->get()->replaceOperand(
|
||||
1, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))]);
|
||||
thenChanged = true;
|
||||
}
|
||||
|
||||
if (thenChanged) {
|
||||
basicBlock->removeSuccessor(OldThenBlock);
|
||||
OldThenBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
// 处理 then 和 else 分支合并的情况
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
thelastBlockOld = nullptr;
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
|
||||
thelastinst->get()->replaceOperand(
|
||||
2, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))]);
|
||||
elseChanged = true;
|
||||
}
|
||||
|
||||
if (elseChanged) {
|
||||
basicBlock->removeSuccessor(OldElseBlock);
|
||||
OldElseBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
// 处理 then 和 else 分支合并的情况
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
// 如果有重定向发生
|
||||
// 需要更新后继块的前驱关系
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// 如果不是终止指令,但有后继 (例如,末尾没有显式终止指令的块)
|
||||
// 这段逻辑可能需要更严谨的CFG检查来确保正确性
|
||||
if (basicBlock->getNumSuccessors() == 1) {
|
||||
// 这里的逻辑似乎是想为没有terminator的块添加一个,但通常这应该在CFG构建阶段完成。
|
||||
// 如果这里仍然执行,确保它符合预期。
|
||||
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
|
||||
// auto thelastinst = basicBlock->getInstructions().end();
|
||||
// (--thelastinst);
|
||||
// auto OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
// sysy::BasicBlock *thelastBlockOld = nullptr;
|
||||
// while (EmptyBlocks.find(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))) !=
|
||||
// EmptyBlocks.end()) {
|
||||
// thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
|
||||
// thelastinst->get()->replaceOperand(
|
||||
// 0, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))]);
|
||||
// }
|
||||
|
||||
// basicBlock->removeSuccessor(OldBrBlock);
|
||||
// OldBrBlock->removePredecessor(basicBlock.get());
|
||||
// basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
|
||||
// dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
|
||||
// changed = true; // 标记IR被修改
|
||||
// if (thelastBlockOld != nullptr) {
|
||||
// int indexphi = 0;
|
||||
// for (auto &pred : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getPredecessors()) {
|
||||
// if (pred == thelastBlockOld) {
|
||||
// break;
|
||||
// }
|
||||
// indexphi++;
|
||||
// }
|
||||
|
||||
// for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
|
||||
// if (InstInNew->isPhi()) {
|
||||
// dynamic_cast<PhiInst *>(InstInNew.get())->removeOperand(indexphi + 1);
|
||||
// } else {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 真正的删除空块
|
||||
for (auto iter = func->getBasicBlocks().begin(); iter != func->getBasicBlocks().end();) {
|
||||
|
||||
if (EmptyBlocks.count(iter->get())) {
|
||||
// EntryBlock跳过
|
||||
if (iter->get() == func->getEntryBlock()) {
|
||||
++iter;
|
||||
continue;
|
||||
}
|
||||
|
||||
for (auto instIter = iter->get()->getInstructions().begin();
|
||||
instIter != iter->get()->getInstructions().end();) {
|
||||
SysYIROptUtils::usedelete(instIter->get()); // 仅删除 use 关系
|
||||
// 显式地从基本块中删除指令并更新迭代器
|
||||
instIter = iter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
// 删除不可达基本块的phi指令的操作数
|
||||
for (auto &succ : iter->get()->getSuccessors()) {
|
||||
for (auto &instinsucc : succ->getInstructions()) {
|
||||
if (instinsucc->isPhi()) {
|
||||
// iter->get() 就是当前被删除的空基本块,它作为前驱连接到这里的Phi指令
|
||||
dynamic_cast<PhiInst *>(instinsucc.get())->delBlk(iter->get());
|
||||
} else {
|
||||
// Phi 指令通常在基本块的开头,如果不是 Phi 指令就停止检查
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func->removeBasicBlock((iter++)->get());
|
||||
changed = true;
|
||||
} else {
|
||||
++iter;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 如果函数没有返回指令,则添加一个默认返回指令(主要解决void函数没有返回指令的问题)
|
||||
bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
|
||||
bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
for (auto &block : basicBlocks) {
|
||||
@@ -588,8 +467,7 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
|
||||
auto thelastinst = block->getInstructions().end();
|
||||
--thelastinst;
|
||||
if (thelastinst->get()->getKind() != Instruction::kReturn) {
|
||||
// std::cout << "Warning: Function " << func->getName() << " has no return instruction, adding default
|
||||
// return." << std::endl;
|
||||
// std::cout << "Warning: Function " << func->getName() << " has no return instruction, adding default return." << std::endl;
|
||||
|
||||
pBuilder->setPosition(block.get(), block->end());
|
||||
// TODO: 如果int float函数缺少返回值是否需要报错
|
||||
@@ -605,7 +483,7 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
@@ -613,18 +491,18 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
|
||||
// 主要针对已知条件值的分支转换为无条件分支
|
||||
// 例如 if (cond) { ... } else { ... } 中的 cond 已经
|
||||
// 确定为 true 或 false 的情况
|
||||
bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
|
||||
bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
for (auto &basicblock : func->getBasicBlocks()) {
|
||||
if (basicblock->getNumInstructions() == 0)
|
||||
continue;
|
||||
|
||||
auto thelast = basicblock->getInstructions().end();
|
||||
--thelast;
|
||||
|
||||
auto thelast = basicblock->terminator();
|
||||
|
||||
if (thelast->get()->isConditional()) {
|
||||
auto condBrInst = dynamic_cast<CondBrInst *>(thelast->get());
|
||||
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(condBrInst->getCondition());
|
||||
if (thelast->get()->isConditional()){
|
||||
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(thelast->get()->getOperand(0));
|
||||
std::string opname;
|
||||
int constint = 0;
|
||||
float constfloat = 0.0F;
|
||||
@@ -643,31 +521,32 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
|
||||
if (constfloat_Use || constint_Use) {
|
||||
changed = true;
|
||||
|
||||
auto thenBlock = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
|
||||
auto elseBlock = dynamic_cast<BasicBlock *>(condBrInst->getElseBlock());
|
||||
thelast = SysYIROptUtils::usedelete(thelast);
|
||||
auto thenBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(1));
|
||||
auto elseBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(2));
|
||||
SysYIROptUtils::usedelete(thelast->get());
|
||||
thelast = basicblock->getInstructions().erase(thelast);
|
||||
if ((constfloat_Use && constfloat == 1.0F) || (constint_Use && constint == 1)) {
|
||||
// cond为true或非0
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(thenBlock);
|
||||
|
||||
pBuilder->createUncondBrInst(thenBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(elseBlock);
|
||||
elseBlock->removePredecessor(basicblock.get());
|
||||
|
||||
|
||||
// 删除elseBlock的phi指令中对应的basicblock.get()的传入值
|
||||
for (auto &phiinst : elseBlock->getInstructions()) {
|
||||
if (phiinst->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->removeIncomingBlock(basicblock.get());
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
|
||||
}
|
||||
|
||||
|
||||
} else { // cond为false或0
|
||||
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(elseBlock);
|
||||
pBuilder->createUncondBrInst(elseBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(thenBlock);
|
||||
@@ -679,8 +558,9 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->removeIncomingBlock(basicblock.get());
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -693,28 +573,28 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
|
||||
// 独立的CFG优化遍的实现
|
||||
// ======================================================================
|
||||
|
||||
bool SysYDelInstAfterBrPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool SysYDelInstAfterBrPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelInstAfterBr(F);
|
||||
}
|
||||
|
||||
bool SysYDelEmptyBlockPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool SysYDelEmptyBlockPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelEmptyBlock(F, pBuilder);
|
||||
}
|
||||
|
||||
bool SysYDelNoPreBLockPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool SysYDelNoPreBLockPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelNoPreBLock(F);
|
||||
}
|
||||
|
||||
bool SysYBlockMergePass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
return SysYCFGOptUtils::SysYBlockMerge(F);
|
||||
bool SysYBlockMergePass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYBlockMerge(F);
|
||||
}
|
||||
|
||||
bool SysYAddReturnPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool SysYAddReturnPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYAddReturn(F, pBuilder);
|
||||
}
|
||||
|
||||
bool SysYCondBr2BrPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool SysYCondBr2BrPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYCondBr2Br(F, pBuilder);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
} // namespace sysy
|
||||
@@ -5,9 +5,7 @@
|
||||
#include "DCE.h"
|
||||
#include "Mem2Reg.h"
|
||||
#include "Reg2Mem.h"
|
||||
#include "SCCP.h"
|
||||
#include "BuildCFG.h"
|
||||
#include "LargeArrayToGlobal.h"
|
||||
#include "ConstPropagation.h"
|
||||
#include "Pass.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
@@ -37,13 +35,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
3. 添加优化passid
|
||||
*/
|
||||
// 注册分析遍
|
||||
registerAnalysisPass<DominatorTreeAnalysisPass>();
|
||||
registerAnalysisPass<LivenessAnalysisPass>();
|
||||
registerAnalysisPass<sysy::DominatorTreeAnalysisPass>();
|
||||
registerAnalysisPass<sysy::LivenessAnalysisPass>();
|
||||
|
||||
// 注册优化遍
|
||||
registerOptimizationPass<BuildCFG>();
|
||||
registerOptimizationPass<LargeArrayToGlobalPass>();
|
||||
|
||||
registerOptimizationPass<SysYDelInstAfterBrPass>();
|
||||
registerOptimizationPass<SysYDelNoPreBLockPass>();
|
||||
registerOptimizationPass<SysYBlockMergePass>();
|
||||
@@ -56,23 +51,11 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
registerOptimizationPass<Mem2Reg>(builderIR);
|
||||
registerOptimizationPass<Reg2Mem>(builderIR);
|
||||
|
||||
registerOptimizationPass<SCCP>(builderIR);
|
||||
|
||||
if (optLevel >= 1) {
|
||||
//经过设计安排优化遍的执行顺序以及执行逻辑
|
||||
if (DEBUG) std::cout << "Applying -O1 optimizations.\n";
|
||||
if (DEBUG) std::cout << "--- Running custom optimization sequence ---\n";
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR Before CFGOpt Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&BuildCFG::ID);
|
||||
this->addPass(&LargeArrayToGlobalPass::ID);
|
||||
this->run();
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&SysYDelInstAfterBrPass::ID);
|
||||
this->addPass(&SysYDelNoPreBLockPass::ID);
|
||||
@@ -82,10 +65,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
this->addPass(&SysYAddReturnPass::ID);
|
||||
this->run();
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&BuildCFG::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After CFGOpt Optimizations ===\n";
|
||||
printPasses();
|
||||
@@ -102,6 +81,7 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&Mem2Reg::ID);
|
||||
this->addPass(&ConstPropagation::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
@@ -109,15 +89,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&SCCP::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After SCCP Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&Reg2Mem::ID);
|
||||
this->run();
|
||||
@@ -126,9 +97,7 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
std::cout << "=== IR After Reg2Mem Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
this->clearPasses();
|
||||
this->addPass(&BuildCFG::ID);
|
||||
this->run();
|
||||
|
||||
if (DEBUG) std::cout << "--- Custom optimization sequence finished ---\n";
|
||||
}
|
||||
|
||||
@@ -143,7 +112,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
SysYPrinter printer(moduleIR);
|
||||
printer.printIR();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PassManager::clearPasses() {
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -240,8 +240,6 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
case Kind::kMul:
|
||||
case Kind::kDiv:
|
||||
case Kind::kRem:
|
||||
case Kind::kSRA:
|
||||
case Kind::kMulh:
|
||||
case Kind::kFAdd:
|
||||
case Kind::kFSub:
|
||||
case Kind::kFMul:
|
||||
@@ -274,8 +272,6 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
case Kind::kMul: std::cout << "mul"; break;
|
||||
case Kind::kDiv: std::cout << "sdiv"; break;
|
||||
case Kind::kRem: std::cout << "srem"; break;
|
||||
case Kind::kSRA: std::cout << "ashr"; break;
|
||||
case Kind::kMulh: std::cout << "mulh"; break;
|
||||
case Kind::kFAdd: std::cout << "fadd"; break;
|
||||
case Kind::kFSub: std::cout << "fsub"; break;
|
||||
case Kind::kFMul: std::cout << "fmul"; break;
|
||||
@@ -299,12 +295,7 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
|
||||
// Types and operands
|
||||
std::cout << " ";
|
||||
// For comparison operations, print operand types instead of result type
|
||||
if (pInst->getKind() >= Kind::kICmpEQ && pInst->getKind() <= Kind::kFCmpGE) {
|
||||
printType(binInst->getLhs()->getType());
|
||||
} else {
|
||||
printType(binInst->getType());
|
||||
}
|
||||
printType(binInst->getType());
|
||||
std::cout << " ";
|
||||
printValue(binInst->getLhs());
|
||||
std::cout << ", ";
|
||||
@@ -417,12 +408,7 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
}
|
||||
std::cout << std::endl;
|
||||
} break;
|
||||
|
||||
case Kind::kUnreachable: {
|
||||
std::cout << "Unreachable" << std::endl;
|
||||
|
||||
} break;
|
||||
|
||||
|
||||
case Kind::kAlloca: {
|
||||
auto allocaInst = dynamic_cast<AllocaInst *>(pInst);
|
||||
std::cout << "%" << allocaInst->getName() << " = alloca ";
|
||||
@@ -433,6 +419,17 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
auto allocatedType = allocaInst->getAllocatedType();
|
||||
printType(allocatedType);
|
||||
|
||||
// 仍然打印维度信息,如果存在的话
|
||||
if (allocaInst->getNumDims() > 0) {
|
||||
std::cout << ", ";
|
||||
for (size_t i = 0; i < allocaInst->getNumDims(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(Type::getIntType()); // 维度大小通常是 i32 类型
|
||||
std::cout << " ";
|
||||
printValue(allocaInst->getDim(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
|
||||
@@ -445,6 +442,17 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
std::cout << " ";
|
||||
printValue(loadInst->getPointer()); // 要加载的地址
|
||||
|
||||
// 仍然打印索引信息,如果存在的话
|
||||
if (loadInst->getNumIndices() > 0) {
|
||||
std::cout << ", indices "; // 或者其他分隔符,取决于你期望的格式
|
||||
for (size_t i = 0; i < loadInst->getNumIndices(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(loadInst->getIndex(i)->getType());
|
||||
std::cout << " ";
|
||||
printValue(loadInst->getIndex(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
|
||||
@@ -459,6 +467,16 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
std::cout << " ";
|
||||
printValue(storeInst->getPointer()); // 目标地址
|
||||
|
||||
// 仍然打印索引信息,如果存在的话
|
||||
if (storeInst->getNumIndices() > 0) {
|
||||
std::cout << ", indices "; // 或者其他分隔符
|
||||
for (size_t i = 0; i < storeInst->getNumIndices(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(storeInst->getIndex(i)->getType());
|
||||
std::cout << " ";
|
||||
printValue(storeInst->getIndex(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
@@ -517,9 +535,9 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
if (!firstPair) std::cout << ", ";
|
||||
firstPair = false;
|
||||
std::cout << "[ ";
|
||||
printValue(phiInst->getIncomingValue(i));
|
||||
printValue(phiInst->getValue(i));
|
||||
std::cout << ", %";
|
||||
printBlock(phiInst->getIncomingBlock(i));
|
||||
printBlock(phiInst->getBlock(i));
|
||||
std::cout << " ]";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
@@ -21,8 +21,6 @@ using namespace sysy;
|
||||
|
||||
int DEBUG = 0;
|
||||
int DEEPDEBUG = 0;
|
||||
int DEEPERDEBUG = 0;
|
||||
int DEBUGLENGTH = 50;
|
||||
|
||||
static string argStopAfter;
|
||||
static string argInputFile;
|
||||
@@ -110,7 +108,6 @@ int main(int argc, char **argv) {
|
||||
// 如果指定停止在 AST 阶段,则打印并退出
|
||||
if (argStopAfter == "ast") {
|
||||
cout << moduleAST->toStringTree(true) << '\n';
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
@@ -133,7 +130,7 @@ int main(int argc, char **argv) {
|
||||
|
||||
if (DEBUG) {
|
||||
cout << "=== Init IR ===\n";
|
||||
moduleIR->print(cout); // 使用新实现的print方法直接打印IR
|
||||
SysYPrinter(moduleIR).printIR(); // 临时打印器用于调试
|
||||
}
|
||||
|
||||
// 创建 Pass 管理器并运行优化管道
|
||||
@@ -145,26 +142,10 @@ int main(int argc, char **argv) {
|
||||
// a) 如果指定停止在 IR 阶段,则打印最终 IR 并退出
|
||||
if (argStopAfter == "ir" || argStopAfter == "ird") {
|
||||
// 打印最终 IR
|
||||
if (DEBUG) cerr << "=== Final IR ===\n";
|
||||
if (!argOutputFilename.empty()) {
|
||||
// 输出到指定文件
|
||||
ofstream fout(argOutputFilename);
|
||||
if (not fout.is_open()) {
|
||||
cerr << "Failed to open output file: " << argOutputFilename << endl;
|
||||
moduleIR->cleanup(); // 清理模块
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
moduleIR->print(fout);
|
||||
fout.close();
|
||||
} else {
|
||||
// 输出到标准输出
|
||||
moduleIR->print(cout);
|
||||
}
|
||||
moduleIR->cleanup(); // 清理模块
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
cout << "=== Final IR ===\n";
|
||||
SysYPrinter printer(moduleIR); // 在这里创建打印器,因为可能之前调试时用过临时打印器
|
||||
printer.printIR();
|
||||
return EXIT_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
// b) 如果未停止在 IR 阶段,则继续生成汇编 (后端)
|
||||
@@ -183,8 +164,6 @@ int main(int argc, char **argv) {
|
||||
ofstream fout(argOutputFilename);
|
||||
if (not fout.is_open()) {
|
||||
cerr << "Failed to open output file: " << argOutputFilename << endl;
|
||||
moduleIR->cleanup(); // 清理模块
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
fout << asmCode << endl;
|
||||
@@ -192,8 +171,6 @@ int main(int argc, char **argv) {
|
||||
} else {
|
||||
cout << asmCode << endl;
|
||||
}
|
||||
moduleIR->cleanup(); // 清理模块
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
@@ -202,7 +179,5 @@ int main(int argc, char **argv) {
|
||||
cout << "Compilation completed. No output specified (neither -s nor -S). Exiting.\n";
|
||||
// return EXIT_SUCCESS; // 或者这里调用一个链接器生成可执行文件
|
||||
|
||||
moduleIR->cleanup(); // 清理模块
|
||||
sysy::cleanupIRPools(); // 清理内存池
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
Reference in New Issue
Block a user