[midend-mem2reg]mem2reg遍基本写完,编译不报错,待reg2mem写完统一测试
This commit is contained in:
383
src/Mem2Reg.cpp
Normal file
383
src/Mem2Reg.cpp
Normal file
@@ -0,0 +1,383 @@
|
||||
#include "Mem2Reg.h" // 包含 Mem2Reg 遍的头文件
|
||||
#include "Dom.h" // 包含支配树分析的头文件
|
||||
#include "Liveness.h"
|
||||
#include "IR.h" // 包含 IR 相关的定义
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <cassert> // 用于断言
|
||||
#include <iostream> // 用于调试输出
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void *Mem2Reg::ID = (void *)&Mem2Reg::ID;
|
||||
|
||||
void Mem2RegContext::run(Function *func, AnalysisManager *AM) {
|
||||
if (func->getBasicBlocks().empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 清空所有状态,确保每次运行都是新的状态
|
||||
promotableAllocas.clear();
|
||||
allocaToPhiMap.clear();
|
||||
allocaToValueStackMap.clear();
|
||||
allocaToStoresMap.clear();
|
||||
allocaToDefBlocksMap.clear();
|
||||
|
||||
// 获取支配树分析结果
|
||||
dt = AM->getAnalysisResult<DominatorTree, DominatorTreeAnalysisPass>(func);
|
||||
assert(dt && "DominatorTreeAnalysisResult not available for Mem2Reg!");
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段1: 识别可提升的 AllocaInst 并收集其 Store 指令
|
||||
// --------------------------------------------------------------------
|
||||
// 遍历函数入口块?中的所有指令,寻找 AllocaInst
|
||||
// 必须是要入口块的吗
|
||||
for (auto &inst : func->getEntryBlock()->getInstructions_Range()) {
|
||||
Value *allocainst = inst.get();
|
||||
if (auto alloca = dynamic_cast<AllocaInst *>(allocainst)) {
|
||||
if (isPromotableAlloca(alloca)) {
|
||||
promotableAllocas.push_back(alloca);
|
||||
collectStores(alloca); // 收集所有对该 alloca 的 store
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段2: 插入 Phi 指令
|
||||
// --------------------------------------------------------------------
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 为每个可提升的 alloca 插入 Phi 指令
|
||||
insertPhis(alloca, allocaToDefBlocksMap[alloca]);
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段3: 变量重命名
|
||||
// --------------------------------------------------------------------
|
||||
// 为每个可提升的 alloca 初始化其值栈
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 初始值通常是 undef 或 null,取决于 IR 类型系统
|
||||
allocaToValueStackMap[alloca].push(nullptr); // 压入一个初始的“未定义”值
|
||||
}
|
||||
|
||||
// 从入口基本块开始,对支配树进行 DFS 遍历,进行变量重命名
|
||||
renameVariables(nullptr, func->getEntryBlock()); // 第一个参数 alloca 在这里不使用,因为是递归入口点
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段4: 清理
|
||||
// --------------------------------------------------------------------
|
||||
cleanup();
|
||||
}
|
||||
|
||||
// 判断一个 AllocaInst 是否可以被提升到寄存器
|
||||
bool Mem2RegContext::isPromotableAlloca(AllocaInst *alloca) {
|
||||
// 1. 必须是标量类型(非数组、非结构体)sysy不支持结构体
|
||||
if (alloca->getType()->as<PointerType>()->getBaseType()->isArray()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2. 其所有用途都必须是 LoadInst 或 StoreInst
|
||||
// (或 GetElementPtrInst,但 GEP 的结果也必须只被 Load/Store 使用)
|
||||
for (auto use : alloca->getUses()) {
|
||||
auto user = use->getUser();
|
||||
if (!user)
|
||||
return false; // 用户无效
|
||||
|
||||
if (dynamic_cast<LoadInst *>(user)) {
|
||||
// OK
|
||||
} else if (dynamic_cast<StoreInst *>(user)) {
|
||||
// OK
|
||||
} else if (auto gep = dynamic_cast<GetElementPtrInst *>(user)) {
|
||||
// 如果是 GetElementPtrInst (GEP)
|
||||
// 需要判断这个 GEP 是否代表了数组元素的访问,而非简单的指针操作
|
||||
// LLVM 的 mem2reg 通常不提升用于数组元素访问的 alloca。
|
||||
// 启发式判断:
|
||||
// 如果 GEP 有多个索引(例如 `getelementptr i32, i32* %ptr, i32 0, i32 %idx`),
|
||||
// 或者第一个索引(对于指针类型)不是常量 0,则很可能是数组访问。
|
||||
// 对于 `alloca i32* %a.param` (对应 `int a[]` 参数),其 `allocatedType()` 是 `i32*`。
|
||||
// 访问 `a[i]` 会生成类似 `getelementptr i32, i32* %a.param, i32 %i` 的 GEP。
|
||||
// 这种 GEP 有两个操作数:基指针和索引。
|
||||
|
||||
// 检查 GEP 的操作数数量和索引值
|
||||
// GEP 的操作数通常是:<base_pointer>, <index_1>, <index_2>, ...
|
||||
// 对于一个 `i32*` 类型的 `alloca`,如果它被 GEP 使用,那么 GEP 的第一个索引通常是 `0`
|
||||
// (表示解引用指针本身),后续索引才是数组元素的索引。
|
||||
// 如果 GEP 的操作数数量大于 2 (即 `base_ptr` 和 `index_0` 之外还有其他索引),
|
||||
// 或者 `index_0` 不是常量 0,则它可能是一个复杂的数组访问。
|
||||
// 假设 `gep->getNumOperands()` 和 `gep->getOperand(idx)->getValue()`
|
||||
// 假设 `ConstantInt` 类用于表示常量整数值
|
||||
if (gep->getNumOperands() > 2) { // 如果有超过一个索引(除了基指针的第一个隐式索引)
|
||||
// std::cerr << "Mem2Reg: Not promotable (GEP with multiple indices): " << alloca->name() << std::endl;
|
||||
return false; // 复杂 GEP,通常表示数组或结构体字段访问
|
||||
}
|
||||
if (gep->getNumOperands() == 2) { // 只有基指针和一个索引
|
||||
Value *firstIndexVal = gep->getOperand(1); // 获取第一个索引值
|
||||
if (auto constInt = dynamic_cast<ConstantInteger *>(firstIndexVal)) {
|
||||
if (constInt->getInt() != 0) {
|
||||
// std::cerr << "Mem2Reg: Not promotable (GEP with non-zero first index): " << alloca->name() << std::endl;
|
||||
return false; // 索引不是0,表示访问数组的非第一个元素
|
||||
}
|
||||
} else {
|
||||
// std::cerr << "Mem2Reg: Not promotable (GEP with non-constant first index): " << alloca->name() <<
|
||||
// std::endl;
|
||||
return false; // 索引不是常量,表示动态数组访问
|
||||
}
|
||||
}
|
||||
|
||||
// 此外,GEP 的结果也必须只被 LoadInst 或 StoreInst 使用
|
||||
for (auto gep_use : gep->getUses()) {
|
||||
auto gep_user = gep_use->getUser();
|
||||
if (!gep_user) {
|
||||
// std::cerr << "Mem2Reg: Not promotable (GEP result null user): " << alloca->name() << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (!dynamic_cast<LoadInst *>(gep_user) && !dynamic_cast<StoreInst *>(gep_user)) {
|
||||
// std::cerr << "Mem2Reg: Not promotable (GEP result used by non-load/store): " << alloca->name() <<
|
||||
// std::endl;
|
||||
return false; // GEP 结果被其他指令使用,地址逃逸或复杂用途
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// 其他类型的用户,如 CallInst (如果地址逃逸),则不能提升
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// 3. 不能是 volatile 内存访问 (假设 AllocaInst 有 isVolatile() 方法)
|
||||
// if (alloca->isVolatile()) return false; // 如果有这样的属性
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// 收集所有对给定 AllocaInst 进行存储的 StoreInst
|
||||
void Mem2RegContext::collectStores(AllocaInst *alloca) {
|
||||
// 遍历 alloca 的所有用途
|
||||
for (auto use : alloca->getUses()) {
|
||||
auto user = use->getUser();
|
||||
if (!user)
|
||||
continue;
|
||||
|
||||
if (auto storeInst = dynamic_cast<StoreInst *>(user)) {
|
||||
allocaToStoresMap[alloca].insert(storeInst);
|
||||
allocaToDefBlocksMap[alloca].insert(storeInst->getParent());
|
||||
} else if (auto gep = dynamic_cast<GetElementPtrInst *>(user)) {
|
||||
// 如果是 GEP,递归收集其下游的 store
|
||||
for (auto gep_use : gep->getUses()) {
|
||||
if (auto gep_store = dynamic_cast<StoreInst *>(gep_use->getUser())) {
|
||||
allocaToStoresMap[alloca].insert(gep_store);
|
||||
allocaToDefBlocksMap[alloca].insert(gep_store->getParent());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 为给定的 AllocaInst 插入必要的 Phi 指令
|
||||
void Mem2RegContext::insertPhis(AllocaInst *alloca, const std::unordered_set<BasicBlock *> &defBlocks) {
|
||||
std::queue<BasicBlock *> workQueue;
|
||||
std::unordered_set<BasicBlock *> phiHasBeenInserted; // 记录已插入 Phi 的基本块
|
||||
|
||||
// 将所有定义块加入工作队列
|
||||
for (auto bb : defBlocks) {
|
||||
workQueue.push(bb);
|
||||
}
|
||||
|
||||
while (!workQueue.empty()) {
|
||||
BasicBlock *currentDefBlock = workQueue.front();
|
||||
workQueue.pop();
|
||||
|
||||
// 遍历当前定义块的支配边界 (Dominance Frontier)
|
||||
const std::set<BasicBlock *> *frontierBlocks = dt->getDominanceFrontier(currentDefBlock);
|
||||
for (auto frontierBlock : *frontierBlocks) {
|
||||
// 如果该支配边界块还没有为当前 alloca 插入 Phi 指令
|
||||
if (phiHasBeenInserted.find(frontierBlock) == phiHasBeenInserted.end()) {
|
||||
// 在支配边界块的开头插入一个新的 Phi 指令
|
||||
// Phi 指令的类型与 alloca 的类型指向的类型相同
|
||||
|
||||
builder->setPosition(frontierBlock, frontierBlock->begin()); // 设置插入位置为基本块开头
|
||||
auto phiInst = builder->createPhiInst(alloca->getAllocatedType(), {}, {frontierBlock}, "");
|
||||
|
||||
allocaToPhiMap[alloca][frontierBlock] = phiInst; // 记录 Phi 指令
|
||||
|
||||
phiHasBeenInserted.insert(frontierBlock); // 标记已插入 Phi
|
||||
|
||||
// 如果这个支配边界块本身也是一个定义块(即使没有 store,但插入了 Phi),
|
||||
// 那么它的支配边界也可能需要插入 Phi
|
||||
// 例如一个xx型的cfg,如果在第一个交叉处插入phi节点,那么第二个交叉处可能也需要插入phi
|
||||
workQueue.push(frontierBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
|
||||
void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *currentBB) {
|
||||
// 维护一个局部栈,用于存储当前基本块中为 Phi 和 Store 创建的 SSA 值,以便在退出时弹出
|
||||
std::stack<Value *> localStackPushed;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 处理当前基本块的指令
|
||||
// --------------------------------------------------------------------
|
||||
for (auto instIter = currentBB->getInstructions().begin(); instIter != currentBB->getInstructions().end();) {
|
||||
Instruction *inst = instIter->get();
|
||||
bool instDeleted = false;
|
||||
|
||||
// 处理 Phi 指令 (如果是当前 alloca 的 Phi)
|
||||
if (auto phiInst = dynamic_cast<PhiInst *>(inst)) {
|
||||
// 检查这个 Phi 是否是为某个可提升的 alloca 插入的
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (allocaToPhiMap[alloca].count(currentBB) && allocaToPhiMap[alloca][currentBB] == phiInst) {
|
||||
// 为 Phi 指令的输出创建一个新的 SSA 值,并压入值栈
|
||||
allocaToValueStackMap[alloca].push(phiInst);
|
||||
localStackPushed.push(phiInst); // 记录以便弹出
|
||||
break; // 找到对应的 alloca,处理下一个指令
|
||||
}
|
||||
}
|
||||
}
|
||||
// 处理 LoadInst
|
||||
else if (auto loadInst = dynamic_cast<LoadInst *>(inst)) {
|
||||
// 检查这个 LoadInst 是否是为某个可提升的 alloca
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (loadInst->getPointer() == alloca) {
|
||||
// loadInst->getPointer() 返回 AllocaInst*
|
||||
// 将 LoadInst 的所有用途替换为当前 alloca 值栈顶部的 SSA 值
|
||||
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca during load replacement!");
|
||||
loadInst->replaceAllUsesWith(allocaToValueStackMap[alloca].top());
|
||||
// instIter = currentBB->force_delete_inst(loadInst); // 删除 LoadInst
|
||||
SysYIROptUtils::usedelete(loadInst); // 仅删除 use 关系
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 LoadInst
|
||||
instDeleted = true;
|
||||
// std::cerr << "Mem2Reg: Replaced load " << loadInst->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 处理 StoreInst
|
||||
else if (auto storeInst = dynamic_cast<StoreInst *>(inst)) {
|
||||
// 检查这个 StoreInst 是否是为某个可提升的 alloca
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (storeInst->getPointer() == alloca) {
|
||||
// 假设 storeInst->getPointer() 返回 AllocaInst*
|
||||
// 将 StoreInst 存储的值作为新的 SSA 值,压入值栈
|
||||
allocaToValueStackMap[alloca].push(storeInst->getValue());
|
||||
localStackPushed.push(storeInst->getValue()); // 记录以便弹出
|
||||
SysYIROptUtils::usedelete(storeInst);
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 StoreInst
|
||||
instDeleted = true;
|
||||
// std::cerr << "Mem2Reg: Replaced store to " << storeInst->ptr()->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!instDeleted) {
|
||||
++instIter; // 如果指令没有被删除,移动到下一个
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 处理后继基本块的 Phi 指令参数
|
||||
// --------------------------------------------------------------------
|
||||
for (auto successorBB : currentBB->getSuccessors()) {
|
||||
if (!successorBB)
|
||||
continue;
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 如果后继基本块包含为当前 alloca 插入的 Phi 指令
|
||||
if (allocaToPhiMap[alloca].count(successorBB)) {
|
||||
auto phiInst = allocaToPhiMap[alloca][successorBB];
|
||||
// 为 Phi 指令添加来自当前基本块的参数
|
||||
// 参数值是当前 alloca 值栈顶部的 SSA 值
|
||||
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca when setting phi operand!");
|
||||
phiInst->addIncoming(allocaToValueStackMap[alloca].top(), currentBB);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 递归访问支配树的子节点
|
||||
// --------------------------------------------------------------------
|
||||
const std::set<BasicBlock *> *dominatedBlocks = dt->getDominators(currentBB);
|
||||
for (auto dominatedBB : *dominatedBlocks) {
|
||||
if (dominatedBB) {
|
||||
renameVariables(currentAlloca, dominatedBB);
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 退出基本块时,弹出在此块中压入值栈的 SSA 值
|
||||
// --------------------------------------------------------------------
|
||||
while (!localStackPushed.empty()) {
|
||||
Value *val = localStackPushed.top();
|
||||
localStackPushed.pop();
|
||||
// 找到是哪个 alloca 对应的栈
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (!allocaToValueStackMap[alloca].empty() && allocaToValueStackMap[alloca].top() == val) {
|
||||
allocaToValueStackMap[alloca].pop();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 删除所有原始的 AllocaInst、LoadInst 和 StoreInst
|
||||
void Mem2RegContext::cleanup() {
|
||||
for (auto alloca : promotableAllocas) {
|
||||
if (alloca && alloca->getParent()) {
|
||||
// 删除 alloca 指令本身
|
||||
SysYIROptUtils::usedelete(alloca);
|
||||
alloca->getParent()->removeInst(alloca); // 从基本块中删除 alloca
|
||||
|
||||
// std::cerr << "Mem2Reg: Deleted alloca " << alloca->name() << std::endl;
|
||||
}
|
||||
}
|
||||
// LoadInst 和 StoreInst 已经在 renameVariables 阶段被删除了
|
||||
}
|
||||
|
||||
// Mem2Reg 遍的 runOnFunction 方法实现
|
||||
bool Mem2Reg::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
// 记录初始的指令数量,用于判断优化是否发生了改变
|
||||
size_t initial_inst_count = 0;
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
initial_inst_count += bb->getInstructions().size();
|
||||
}
|
||||
|
||||
Mem2RegContext ctx(builder);
|
||||
ctx.run(F, &AM); // 运行 Mem2Reg 优化
|
||||
|
||||
// 运行优化后,再次计算指令数量
|
||||
size_t final_inst_count = 0;
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
final_inst_count += bb->getInstructions().size();
|
||||
}
|
||||
|
||||
// 如果指令数量发生变化(通常是减少,因为 load/store 被删除,phi 被添加),说明 IR 被修改了
|
||||
// TODO:不保险,后续修改为更精确的判断
|
||||
// 直接在添加和删除指令时维护changed值
|
||||
bool changed = (initial_inst_count != final_inst_count);
|
||||
|
||||
// 如果 IR 被修改,则使相关的分析结果失效
|
||||
if (changed) {
|
||||
// Mem2Reg 会显著改变 IR 结构,特别是数据流和控制流(通过 Phi)。
|
||||
// 这会使几乎所有数据流分析和部分控制流分析失效。
|
||||
// AM.invalidateAnalysis(&DominatorTreeAnalysisPass::ID, F); // 支配树可能间接改变(如果基本块被删除)
|
||||
// AM.invalidateAnalysis(&LivenessAnalysisPass::ID, F); // 活跃性分析肯定失效
|
||||
// AM.invalidateAnalysis(&LoopInfoAnalysisPass::ID, F); // 循环信息可能失效
|
||||
// AM.invalidateAnalysis(&SideEffectInfoAnalysisPass::ID); // 副作用分析可能失效(如果 Alloca/Load/Store
|
||||
// 被替换为寄存器)
|
||||
// ... 其他数据流分析,如到达定义、可用表达式等,也应失效
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 声明Mem2Reg遍的分析依赖和失效信息
|
||||
void Mem2Reg::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// Mem2Reg 强烈依赖于支配树分析来插入 Phi 指令
|
||||
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID); // 假设 DominatorTreeAnalysisPass 的 ID
|
||||
|
||||
// Mem2Reg 会删除 Alloca/Load/Store 指令,插入 Phi 指令,这会大幅改变 IR 结构。
|
||||
// 因此,它会使许多分析结果失效。
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID); // 支配树可能受影响
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID); // 活跃性分析肯定失效
|
||||
// analysisInvalidations.insert(&LoopInfoAnalysisPass::ID); // 循环信息可能失效
|
||||
// analysisInvalidations.insert(&SideEffectInfoAnalysisPass::ID); // 副作用分析可能失效
|
||||
// 其他所有依赖于数据流或 IR 结构的分析都可能失效。
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@@ -1112,7 +1112,10 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
//! 获取分配的类型
|
||||
Type* getAllocatedType() const {
|
||||
return getType()->as<PointerType>()->getBaseType();
|
||||
} ///< 获取分配的类型
|
||||
int getNumDims() const { return getNumOperands(); }
|
||||
auto getDims() const { return getOperands(); }
|
||||
Value* getDim(int index) { return getOperand(index); }
|
||||
|
||||
118
src/include/Mem2Reg.h
Normal file
118
src/include/Mem2Reg.h
Normal file
@@ -0,0 +1,118 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h" // 包含Pass的基类定义
|
||||
#include "IR.h" // 包含IR相关的定义,如Instruction, Function, BasicBlock, AllocaInst, LoadInst, StoreInst, PhiInst等
|
||||
#include "Dom.h" // 假设支配树分析的头文件,提供 DominatorTreeAnalysisResult
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <queue>
|
||||
#include <stack> // 用于变量重命名阶段的SSA值栈
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 前向声明分析结果类,确保在需要时可以引用
|
||||
class DominatorTree;
|
||||
|
||||
// Mem2RegContext 类,封装 mem2reg 遍的核心逻辑和状态
|
||||
// 这样可以避免静态变量在多线程或多次运行时的冲突,并保持代码的模块化
|
||||
class Mem2RegContext {
|
||||
public:
|
||||
|
||||
Mem2RegContext(IRBuilder *builder) : builder(builder) {}
|
||||
// 运行 mem2reg 优化的主要方法
|
||||
// func: 当前要优化的函数
|
||||
// tp: 分析管理器,用于获取支配树等分析结果
|
||||
void run(Function* func, AnalysisManager* tp);
|
||||
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器,用于插入指令
|
||||
// 存储所有需要被提升的 AllocaInst
|
||||
std::vector<AllocaInst*> promotableAllocas;
|
||||
|
||||
// 存储每个 AllocaInst 对应的 Phi 指令列表
|
||||
// 键是 AllocaInst,值是该 AllocaInst 在各个基本块中插入的 Phi 指令的列表
|
||||
// (实际上,一个 AllocaInst 在一个基本块中只会有一个 Phi)
|
||||
std::unordered_map<AllocaInst*, std::unordered_map<BasicBlock*, PhiInst*>> allocaToPhiMap;
|
||||
|
||||
// 存储每个 AllocaInst 对应的当前活跃 SSA 值栈
|
||||
// 用于在变量重命名阶段追踪每个 AllocaInst 在不同控制流路径上的最新值
|
||||
std::unordered_map<AllocaInst*, std::stack<Value*>> allocaToValueStackMap;
|
||||
|
||||
// 辅助映射,存储每个 AllocaInst 的所有 store 指令
|
||||
std::unordered_map<AllocaInst*, std::unordered_set<StoreInst*>> allocaToStoresMap;
|
||||
|
||||
// 辅助映射,存储每个 AllocaInst 对应的定义基本块(包含 store 指令的块)
|
||||
std::unordered_map<AllocaInst*, std::unordered_set<BasicBlock*>> allocaToDefBlocksMap;
|
||||
|
||||
// 支配树分析结果,用于 Phi 插入和变量重命名
|
||||
DominatorTree* dt;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段1: 识别可提升的 AllocaInst
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
// 判断一个 AllocaInst 是否可以被提升到寄存器
|
||||
// alloca: 要检查的 AllocaInst
|
||||
// 返回值: 如果可以提升,则为 true,否则为 false
|
||||
bool isPromotableAlloca(AllocaInst* alloca);
|
||||
|
||||
// 收集所有对给定 AllocaInst 进行存储的 StoreInst
|
||||
// alloca: 目标 AllocaInst
|
||||
void collectStores(AllocaInst* alloca);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段2: 插入 Phi 指令 (Phi Insertion)
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
// 为给定的 AllocaInst 插入必要的 Phi 指令
|
||||
// alloca: 目标 AllocaInst
|
||||
// defBlocks: 包含对该 AllocaInst 进行 store 操作的基本块集合
|
||||
void insertPhis(AllocaInst* alloca, const std::unordered_set<BasicBlock*>& defBlocks);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段3: 变量重命名 (Variable Renaming)
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
|
||||
// alloca: 当前正在处理的 AllocaInst
|
||||
// currentBB: 当前正在遍历的基本块
|
||||
// dt: 支配树分析结果
|
||||
// valueStack: 存储当前 AllocaInst 在当前路径上可见的 SSA 值栈
|
||||
void renameVariables(AllocaInst* alloca, BasicBlock* currentBB);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// 阶段4: 清理
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
// 删除所有原始的 AllocaInst、LoadInst 和 StoreInst
|
||||
void cleanup();
|
||||
};
|
||||
|
||||
// Mem2Reg 优化遍类,继承自 OptimizationPass
|
||||
// 粒度为 Function,表示它在每个函数上独立运行
|
||||
class Mem2Reg : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder *builder;
|
||||
|
||||
public:
|
||||
// 构造函数
|
||||
Mem2Reg(IRBuilder *builder) : OptimizationPass("Mem2Reg", Granularity::Function), builder(builder) {}
|
||||
|
||||
// 静态成员,作为该遍的唯一ID
|
||||
static void *ID;
|
||||
|
||||
// 运行在函数上的优化逻辑
|
||||
// F: 当前要优化的函数
|
||||
// AM: 分析管理器,用于获取支配树等分析结果,或使分析结果失效
|
||||
// 返回值: 如果IR被修改,则为true,否则为false
|
||||
bool runOnFunction(Function *F, AnalysisManager& AM) override;
|
||||
|
||||
// 声明该遍的分析依赖和失效信息
|
||||
// analysisDependencies: 该遍运行前需要哪些分析结果
|
||||
// analysisInvalidations: 该遍运行后会使哪些分析结果失效
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
Reference in New Issue
Block a user