Files
csapp2025/perflab/poly/clock.c
2025-04-17 23:02:23 +08:00

230 lines
6.1 KiB
C

/* clock.c
* Retrofitted to use thread-specific timers
* and to get clock information from /proc/cpuinfo
* (C) R. E. Bryant, 2010
*
*/
/* When this constant is not defined, uses time stamp counter */
#define USE_POSIX 0
/* Choice to use cpu_gettime call or Intel time stamp counter directly */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <intrin.h>
//#include <intrinsics.h>
#include <windows.h>
#include <time.h>
#include "clock.h"
/* Use x86 cycle counter */
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo)
{
long long counter;
counter = __rdtsc();
(*hi) = (unsigned int)(counter >> 32);
(*lo) = (unsigned int)counter;
/*
LARGE_INTEGER lPerformanceCount;
QueryPerformanceCounter(&lPerformanceCount);
(*hi) = (unsigned int)lPerformanceCount.HighPart;
(*lo) = (unsigned int)lPerformanceCount.LowPart;
// printf("%08X %08X\n",(*hi),(*lo));
*/
}
/* Record the current value of the cycle counter. */
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);
}
/* Return the number of cycles since the last call to start_counter. */
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = cyc_lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
return result;
}
void make_CPU_busy(void)
{
volatile double old_tick,new_tick;
start_counter();
old_tick = get_counter();
new_tick = get_counter();
while (new_tick - old_tick < 1000000000)
new_tick = get_counter();
}
//CPU的频率
double mhz(int verbose)
{
LARGE_INTEGER lFrequency;
LARGE_INTEGER lPerformanceCount_Start;
LARGE_INTEGER lPerformanceCount_End;
double mhz;
double fTime;
__int64 _i64StartCpuCounter;
__int64 _i64EndCpuCounter;
//On a multiprocessor machine, it should not matter which processor is called.
//However, you can get different results on different processors due to bugs in
//the BIOS or the HAL. To specify processor affinity for a thread, use the SetThreadAffinityMask function.
HANDLE hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
//主板上高精度定时器的晶振频率
//这个定时器应该就是一片8253或者8254
//在intel ich7中集成了8254
QueryPerformanceFrequency(&lFrequency);
// if (verbose>0)
// printf("高精度定时器的晶振频率:%1.0fHz.\n",(double)lFrequency.QuadPart);
//这个定时器每经过一个时钟周期,其计数器会+1
QueryPerformanceCounter(&lPerformanceCount_Start);
//RDTSC指令:获取CPU经历的时钟周期数
_i64StartCpuCounter=__rdtsc();
//延时长一点,误差会小一点
//int nTemp=100000;
//while (--nTemp);
Sleep(200);
QueryPerformanceCounter(&lPerformanceCount_End);
_i64EndCpuCounter=__rdtsc();
//f=1/T => f=计数次数/(计数次数*T)
//这里的“计数次数*T”就是时间差
fTime=((double)lPerformanceCount_End.QuadPart-(double)lPerformanceCount_Start.QuadPart)
/(double)lFrequency.QuadPart;
mhz = (_i64EndCpuCounter-_i64StartCpuCounter)/(fTime*1000000.0);
if (verbose>0)
printf("CPU频率为:%1.6fMHz.\n",mhz);
return mhz;
}
double CPU_Factor1(void)
{
double result;
int i,j,k,ii,jj,kk;
LARGE_INTEGER lStart,lEnd;
LARGE_INTEGER lFrequency;
HANDLE hThread;
double fTime;
QueryPerformanceFrequency(&lFrequency);
ii = 43273;
kk = 1238;
result = 1;
jj = 1244;
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&lStart);
//_asm("cpuid");
start_counter();
for (i=0;i<100;i++)
for (j=0;j<1000;j++)
for (k=0;k<1000;k++)
kk += kk*ii+jj;
result = get_counter();
QueryPerformanceCounter(&lEnd);
fTime=((double)lEnd.QuadPart-(double)lStart.QuadPart);
printf("CPU运行时间为%f",result);
printf("\t %f\n",fTime);
return result;
}
double CPU_Factor(void)
{
double frequency;
double multiplier = 1000 * 1000 * 1000;//nano
LARGE_INTEGER lFrequency;
LARGE_INTEGER start,stop;
HANDLE hThread;
int i;
const int gigahertz= 1000*1000*1000;
const int known_instructions_per_loop = 27317;
int iterations = 100000000;
int g = 0;
double normal_ticks_per_second;
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
QueryPerformanceFrequency(&lFrequency);
frequency = (double)lFrequency.QuadPart;
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&start);
for( i = 0; i < iterations; i++)
{
g++;
g++;
g++;
g++;
}
QueryPerformanceCounter(&stop);
//normal ticks differs from the WMI data, i.e 3125, when WMI 3201, and CPUZ 3199
normal_ticks_per_second = frequency * 1000;
ticks = (double)((double)stop.QuadPart - (double)start.QuadPart);
time = (ticks * multiplier) /frequency;
loops_per_sec = iterations / (time/multiplier);
instructions_per_loop = normal_ticks_per_second / loops_per_sec;
ratio = (instructions_per_loop / known_instructions_per_loop);
actual_freq = normal_ticks_per_second / ratio;
/*
actual_freq = normal_ticks_per_second / ratio;
actual_freq = known_instructions_per_loop*iterations*multiplier/time;
2293 = x/time;
2292.599713*1191533038.809362=known_instructions_per_loop*100000000*1000
loops_per_sec = iterations*frequency / ticks
instructions_per_loop = / loops_per_sec;
*/
printf("Perf counter freq: %f\n", normal_ticks_per_second);
printf("Loops per sec: %f\n", loops_per_sec);
printf("Perf counter freq div loops per sec: %f\n", instructions_per_loop);
printf("Presumed freq: %f\n", actual_freq);
printf("ratio: %f\n", ratio);
printf("time=%f\n",time);
return ratio;
}