Files
Lucina3DS/externals/openal-soft/utils/makemhr/loadsofa.cpp
2025-02-06 22:24:29 +08:00

604 lines
20 KiB
C++

/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include "loadsofa.h"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <functional>
#include <future>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <thread>
#include <vector>
#include "aloptional.h"
#include "alspan.h"
#include "makemhr.h"
#include "polyphase_resampler.h"
#include "sofa-support.h"
#include "mysofa.h"
using uint = unsigned int;
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
* This will remove outliers and produce a maximally dense layout when
* possible. Those sets that contain purely random measurements or use
* different major axes will fail.
*/
static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
{
fprintf(stdout, "Detecting compatible layout...\n");
auto fds = GetCompatibleLayout(m, xyzs);
if(fds.size() > MAX_FD_COUNT)
{
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
return false;
}
double distances[MAX_FD_COUNT]{};
uint evCounts[MAX_FD_COUNT]{};
auto azCounts = std::vector<std::array<uint,MAX_EV_COUNT>>(MAX_FD_COUNT);
for(auto &azs : azCounts) azs.fill(0u);
uint fi{0u}, ir_total{0u};
for(const auto &field : fds)
{
distances[fi] = field.mDistance;
evCounts[fi] = field.mEvCount;
for(uint ei{0u};ei < field.mEvStart;ei++)
azCounts[fi][ei] = field.mAzCounts[field.mEvCount-ei-1];
for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
{
azCounts[fi][ei] = field.mAzCounts[ei];
ir_total += field.mAzCounts[ei];
}
++fi;
}
fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
const auto azs = al::as_span(azCounts).first<MAX_FD_COUNT>();
return PrepareHrirData({distances, fi}, evCounts, azs, hData);
}
float GetSampleRate(MYSOFA_HRTF *sofaHrtf)
{
const char *srate_dim{nullptr};
const char *srate_units{nullptr};
MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
while(srate_attrs)
{
if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
{
if(srate_dim)
{
fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
return 0.0f;
}
srate_dim = srate_attrs->value;
}
else if(std::string{"Units"} == srate_attrs->name)
{
if(srate_units)
{
fprintf(stderr, "Duplicate SampleRate.Units\n");
return 0.0f;
}
srate_units = srate_attrs->value;
}
else
fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
srate_attrs->value);
srate_attrs = srate_attrs->next;
}
if(!srate_dim)
{
fprintf(stderr, "Missing sample rate dimensions\n");
return 0.0f;
}
if(srate_dim != std::string{"I"})
{
fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
return 0.0f;
}
if(!srate_units)
{
fprintf(stderr, "Missing sample rate unit type\n");
return 0.0f;
}
if(srate_units != std::string{"hertz"})
{
fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
return 0.0f;
}
/* I dimensions guarantees 1 element, so just extract it. */
if(srate_array->values[0] < MIN_RATE || srate_array->values[0] > MAX_RATE)
{
fprintf(stderr, "Sample rate out of range: %f (expected %u to %u)", srate_array->values[0],
MIN_RATE, MAX_RATE);
return 0.0f;
}
return srate_array->values[0];
}
enum class DelayType : uint8_t {
None,
I_R, /* [1][Channels] */
M_R, /* [HRIRs][Channels] */
Invalid,
};
DelayType PrepareDelay(MYSOFA_HRTF *sofaHrtf)
{
const char *delay_dim{nullptr};
MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
while(delay_attrs)
{
if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
{
if(delay_dim)
{
fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
return DelayType::Invalid;
}
delay_dim = delay_attrs->value;
}
else
fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
delay_attrs->value ? delay_attrs->value : "<null>");
delay_attrs = delay_attrs->next;
}
if(!delay_dim)
{
fprintf(stderr, "Missing delay dimensions\n");
return DelayType::None;
}
if(delay_dim == std::string{"I,R"})
return DelayType::I_R;
else if(delay_dim == std::string{"M,R"})
return DelayType::M_R;
fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
return DelayType::Invalid;
}
bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
{
const char *ir_dim{nullptr};
MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
while(ir_attrs)
{
if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
{
if(ir_dim)
{
fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
return false;
}
ir_dim = ir_attrs->value;
}
else
fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
ir_attrs->value ? ir_attrs->value : "<null>");
ir_attrs = ir_attrs->next;
}
if(!ir_dim)
{
fprintf(stderr, "Missing IR dimensions\n");
return false;
}
if(ir_dim != std::string{"M,R,N"})
{
fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
return false;
}
return true;
}
/* Calculate the onset time of a HRIR. */
static constexpr int OnsetRateMultiple{10};
static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n,
al::span<double> upsampled, const double *hrir)
{
rs.process(n, hrir, static_cast<uint>(upsampled.size()), upsampled.data());
auto abs_lt = [](const double &lhs, const double &rhs) -> bool
{ return std::abs(lhs) < std::abs(rhs); };
auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
(double{OnsetRateMultiple}*rate);
}
/* Calculate the magnitude response of a HRIR. */
static void CalcHrirMagnitude(const uint points, const uint n, al::span<complex_d> h, double *hrir)
{
auto iter = std::copy_n(hrir, points, h.begin());
std::fill(iter, h.end(), complex_d{0.0, 0.0});
FftForward(n, h.data());
MagnitudeResponse(n, h.data(), hrir);
}
static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData, const DelayType delayType,
const uint outRate)
{
std::atomic<uint> loaded_count{0u};
auto load_proc = [sofaHrtf,hData,delayType,outRate,&loaded_count]() -> bool
{
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0);
double *hrirs = hData->mHrirsBase.data();
std::unique_ptr<double[]> restmp;
al::optional<PPhaseResampler> resampler;
if(outRate && outRate != hData->mIrRate)
{
resampler.emplace().init(hData->mIrRate, outRate);
restmp = std::make_unique<double[]>(sofaHrtf->N);
}
for(uint si{0u};si < sofaHrtf->M;++si)
{
loaded_count.fetch_add(1u);
float aer[3]{
sofaHrtf->SourcePosition.values[3*si],
sofaHrtf->SourcePosition.values[3*si + 1],
sofaHrtf->SourcePosition.values[3*si + 2]
};
mysofa_c2s(aer);
if(std::abs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
[&aer](const HrirFdT &fld) -> bool
{ return (std::abs(aer[2] - fld.mDistance) < 0.001); });
if(field == hData->mFds.cend())
continue;
const double evscale{180.0 / static_cast<double>(field->mEvs.size()-1)};
double ef{(90.0 + aer[1]) / evscale};
auto ei = static_cast<uint>(std::round(ef));
ef = (ef - ei) * evscale;
if(std::abs(ef) >= 0.1) continue;
const double azscale{360.0 / static_cast<double>(field->mEvs[ei].mAzs.size())};
double af{aer[0] / azscale};
auto ai = static_cast<uint>(std::round(af));
af = (af-ai) * azscale;
ai %= static_cast<uint>(field->mEvs[ei].mAzs.size());
if(std::abs(af) >= 0.1) continue;
HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
aer[0], aer[1], aer[2]);
return false;
}
for(uint ti{0u};ti < channels;++ti)
{
azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
if(!resampler)
std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
sofaHrtf->N, azd->mIrs[ti]);
else
{
std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
sofaHrtf->N, restmp.get());
resampler->process(sofaHrtf->N, restmp.get(), hData->mIrSize, azd->mIrs[ti]);
}
}
/* Include any per-channel or per-HRIR delays. */
if(delayType == DelayType::I_R)
{
const float *delayValues{sofaHrtf->DataDelay.values};
for(uint ti{0u};ti < channels;++ti)
azd->mDelays[ti] = delayValues[ti] / static_cast<float>(hData->mIrRate);
}
else if(delayType == DelayType::M_R)
{
const float *delayValues{sofaHrtf->DataDelay.values};
for(uint ti{0u};ti < channels;++ti)
azd->mDelays[ti] = delayValues[si*sofaHrtf->R + ti] /
static_cast<float>(hData->mIrRate);
}
}
if(outRate && outRate != hData->mIrRate)
{
const double scale{static_cast<double>(outRate) / hData->mIrRate};
hData->mIrRate = outRate;
hData->mIrPoints = std::min(static_cast<uint>(std::ceil(hData->mIrPoints*scale)),
hData->mIrSize);
}
return true;
};
std::future_status load_status{};
auto load_future = std::async(std::launch::async, load_proc);
do {
load_status = load_future.wait_for(std::chrono::milliseconds{50});
printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
fflush(stdout);
} while(load_status != std::future_status::ready);
fputc('\n', stdout);
return load_future.get();
}
/* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
* this struct, which runs asynchronously on one or more threads (sharing the
* same calculator object).
*/
struct MagCalculator {
const uint mFftSize{};
const uint mIrPoints{};
std::vector<double*> mIrs{};
std::atomic<size_t> mCurrent{};
std::atomic<size_t> mDone{};
void Worker()
{
auto htemp = std::vector<complex_d>(mFftSize);
while(1)
{
/* Load the current index to process. */
size_t idx{mCurrent.load()};
do {
/* If the index is at the end, we're done. */
if(idx >= mIrs.size())
return;
/* Otherwise, increment the current index atomically so other
* threads know to go to the next one. If this call fails, the
* current index was just changed by another thread and the new
* value is loaded into idx, which we'll recheck.
*/
} while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]);
/* Increment the number of IRs done. */
mDone.fetch_add(1);
}
}
};
bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize,
const uint truncSize, const uint outRate, const ChannelModeT chanMode, HrirDataT *hData)
{
int err;
MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
if(!sofaHrtf)
{
fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
return false;
}
/* NOTE: Some valid SOFA files are failing this check. */
err = mysofa_check(sofaHrtf.get());
if(err != MYSOFA_OK)
fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
SofaErrorStr(err));
mysofa_tocartesian(sofaHrtf.get());
/* Make sure emitter and receiver counts are sane. */
if(sofaHrtf->E != 1)
{
fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
return false;
}
if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
{
fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
return false;
}
/* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
hData->mChannelType = CT_STEREO;
else
hData->mChannelType = CT_MONO;
/* Check and set the FFT and IR size. */
if(sofaHrtf->N > fftSize)
{
fprintf(stderr, "Sample points exceeds the FFT size.\n");
return false;
}
if(sofaHrtf->N < truncSize)
{
fprintf(stderr, "Sample points is below the truncation size.\n");
return false;
}
hData->mIrPoints = sofaHrtf->N;
hData->mFftSize = fftSize;
hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
/* Assume a default head radius of 9cm. */
hData->mRadius = 0.09;
hData->mIrRate = static_cast<uint>(GetSampleRate(sofaHrtf.get()) + 0.5f);
if(!hData->mIrRate)
return false;
DelayType delayType = PrepareDelay(sofaHrtf.get());
if(delayType == DelayType::Invalid)
return false;
if(!CheckIrData(sofaHrtf.get()))
return false;
if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
return false;
if(!LoadResponses(sofaHrtf.get(), hData, delayType, outRate))
return false;
sofaHrtf = nullptr;
for(uint fi{0u};fi < hData->mFds.size();fi++)
{
uint ei{0u};
for(;ei < hData->mFds[fi].mEvs.size();ei++)
{
uint ai{0u};
for(;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] != nullptr) break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzs.size())
break;
}
if(ei >= hData->mFds[fi].mEvs.size())
{
fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
return false;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvs.size();ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] == nullptr)
{
fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return false;
}
}
}
}
size_t hrir_total{0};
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
double *hrirs = hData->mHrirsBase.data();
for(uint fi{0u};fi < hData->mFds.size();fi++)
{
for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
for(uint ti{0u};ti < channels;ti++)
azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
}
}
for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();ei++)
hrir_total += hData->mFds[fi].mEvs[ei].mAzs.size() * channels;
}
std::atomic<size_t> hrir_done{0};
auto onset_proc = [hData,channels,&hrir_done]() -> bool
{
/* Temporary buffer used to calculate the IR's onset. */
auto upsampled = std::vector<double>(OnsetRateMultiple * hData->mIrPoints);
/* This resampler is used to help detect the response onset. */
PPhaseResampler rs;
rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
for(auto &field : hData->mFds)
{
for(auto &elev : field.mEvs.subspan(field.mEvStart))
{
for(auto &azd : elev.mAzs)
{
for(uint ti{0};ti < channels;ti++)
{
hrir_done.fetch_add(1u, std::memory_order_acq_rel);
azd.mDelays[ti] += CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints,
upsampled, azd.mIrs[ti]);
}
}
}
}
return true;
};
std::future_status load_status{};
auto load_future = std::async(std::launch::async, onset_proc);
do {
load_status = load_future.wait_for(std::chrono::milliseconds{50});
printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
fflush(stdout);
} while(load_status != std::future_status::ready);
fputc('\n', stdout);
if(!load_future.get())
return false;
MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
for(auto &field : hData->mFds)
{
for(auto &elev : field.mEvs.subspan(field.mEvStart))
{
for(auto &azd : elev.mAzs)
{
for(uint ti{0};ti < channels;ti++)
calculator.mIrs.push_back(azd.mIrs[ti]);
}
}
}
std::vector<std::thread> thrds;
thrds.reserve(numThreads);
for(size_t i{0};i < numThreads;++i)
thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
size_t count;
do {
std::this_thread::sleep_for(std::chrono::milliseconds{50});
count = calculator.mDone.load();
printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
fflush(stdout);
} while(count != calculator.mIrs.size());
fputc('\n', stdout);
for(auto &thrd : thrds)
{
if(thrd.joinable())
thrd.join();
}
return true;
}