Files
mysysy/src/IR.h
2025-02-27 23:14:53 +08:00

994 lines
28 KiB
C++

#pragma once
#include "range.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <ostream>
#include <string>
#include <type_traits>
#include <vector>
namespace sysy {
/*!
* \defgroup type Types
* The SysY type system is quite simple.
* 1. The base class `Type` is used to represent all primitive scalar types,
* include `int`, `float`, `void`, and the label type representing branch
* targets.
* 2. `PointerType` and `FunctionType` derive from `Type` and represent pointer
* type and function type, respectively.
*
* NOTE `Type` and its derived classes have their ctors declared as 'protected'.
* Users must use Type::getXXXType() methods to obtain `Type` pointers.
* @{
*/
/*!
* `Type` is used to represent all primitive scalar types,
* include `int`, `float`, `void`, and the label type representing branch
* targets
*/
class Type {
public:
enum Kind {
kInt,
kFloat,
kVoid,
kLabel,
kPointer,
kFunction,
};
Kind kind;
protected:
Type(Kind kind) : kind(kind) {}
virtual ~Type() = default;
public:
static Type *getIntType();
static Type *getFloatType();
static Type *getVoidType();
static Type *getLabelType();
static Type *getPointerType(Type *baseType);
static Type *getFunctionType(Type *returnType,
const std::vector<Type *> &paramTypes = {});
public:
Kind getKind() const { return kind; }
bool isInt() const { return kind == kInt; }
bool isFloat() const { return kind == kFloat; }
bool isVoid() const { return kind == kVoid; }
bool isLabel() const { return kind == kLabel; }
bool isPointer() const { return kind == kPointer; }
bool isFunction() const { return kind == kFunction; }
bool isIntOrFloat() const { return kind == kInt or kind == kFloat; }
int getSize() const;
template <typename T>
std::enable_if_t<std::is_base_of_v<Type, T>, T *> as() const {
return dynamic_cast<T *>(const_cast<Type *>(this));
}
void print(std::ostream &os) const;
}; // class Type
//! Pointer type
class PointerType : public Type {
protected:
Type *baseType;
protected:
PointerType(Type *baseType) : Type(kPointer), baseType(baseType) {}
public:
static PointerType *get(Type *baseType);
public:
Type *getBaseType() const { return baseType; }
}; // class PointerType
//! Function type
class FunctionType : public Type {
private:
Type *returnType;
std::vector<Type *> paramTypes;
protected:
FunctionType(Type *returnType, const std::vector<Type *> &paramTypes = {})
: Type(kFunction), returnType(returnType), paramTypes(paramTypes) {}
public:
static FunctionType *get(Type *returnType,
const std::vector<Type *> &paramTypes = {});
public:
Type *getReturnType() const { return returnType; }
auto getParamTypes() const { return make_range(paramTypes); }
int getNumParams() const { return paramTypes.size(); }
}; // class FunctionType
/*!
* @}
*/
/*!
* \defgroup ir IR
*
* The SysY IR is an instruction level language. The IR is orgnized
* as a four-level tree structure, as shown below
*
* \dotfile ir-4level.dot IR Structure
*
* - `Module` corresponds to the top level "CompUnit" syntax structure
* - `GlobalValue` corresponds to the "Decl" syntax structure
* - `Function` corresponds to the "FuncDef" syntax structure
* - `BasicBlock` is a sequence of instructions without branching. A `Function`
* made up by one or more `BasicBlock`s.
* - `Instruction` represents a primitive operation on values, e.g., add or sub.
*
* The fundamental data concept in SysY IR is `Value`. A `Value` is like
* a register and is used by `Instruction`s as input/output operand. Each value
* has an associated `Type` indicating the data type held by the value.
*
* Most `Instruction`s have a three-address signature, i.e., there are at most 2
* input values and at most 1 output value.
*
* The SysY IR adots a Static-Single-Assignment (SSA) design. That is, `Value`
* is defined (as the output operand ) by some instruction, and used (as the
* input operand) by other instructions. While a value can be used by multiple
* instructions, the `definition` occurs only once. As a result, there is a
* one-to-one relation between a value and the instruction defining it. In other
* words, any instruction defines a value can be viewed as the defined value
* itself. So `Instruction` is also a `Value` in SysY IR. See `Value` for the
* type hierachy.
*
* @{
*/
class User;
class Value;
//! `Use` represents the relation between a `Value` and its `User`
class Use {
private:
//! the position of value in the user's operands, i.e.,
//! user->getOperands[index] == value
int index;
User *user;
Value *value;
public:
Use() = default;
Use(int index, User *user, Value *value)
: index(index), user(user), value(value) {}
public:
int getIndex() const { return index; }
User *getUser() const { return user; }
Value *getValue() const { return value; }
void setValue(Value *value) { value = value; }
}; // class Use
template <typename T>
inline std::enable_if_t<std::is_base_of_v<Value, T>, bool>
isa(const Value *value) {
return T::classof(value);
}
template <typename T>
inline std::enable_if_t<std::is_base_of_v<Value, T>, T *>
dyncast(Value *value) {
return isa<T>(value) ? static_cast<T *>(value) : nullptr;
}
template <typename T>
inline std::enable_if_t<std::is_base_of_v<Value, T>, const T *>
dyncast(const Value *value) {
return isa<T>(value) ? static_cast<const T *>(value) : nullptr;
}
//! The base class of all value types
class Value {
public:
enum Kind : uint64_t {
kInvalid,
// Instructions
// Binary
kAdd = 0x1UL << 0,
kSub = 0x1UL << 1,
kMul = 0x1UL << 2,
kDiv = 0x1UL << 3,
kRem = 0x1UL << 4,
kICmpEQ = 0x1UL << 5,
kICmpNE = 0x1UL << 6,
kICmpLT = 0x1UL << 7,
kICmpGT = 0x1UL << 8,
kICmpLE = 0x1UL << 9,
kICmpGE = 0x1UL << 10,
kFAdd = 0x1UL << 14,
kFSub = 0x1UL << 15,
kFMul = 0x1UL << 16,
kFDiv = 0x1UL << 17,
kFRem = 0x1UL << 18,
kFCmpEQ = 0x1UL << 19,
kFCmpNE = 0x1UL << 20,
kFCmpLT = 0x1UL << 21,
kFCmpGT = 0x1UL << 22,
kFCmpLE = 0x1UL << 23,
kFCmpGE = 0x1UL << 24,
// Unary
kNeg = 0x1UL << 25,
kNot = 0x1UL << 26,
kFNeg = 0x1UL << 27,
kFtoI = 0x1UL << 28,
kIToF = 0x1UL << 29,
// call
kCall = 0x1UL << 30,
// terminator
kCondBr = 0x1UL << 31,
kBr = 0x1UL << 32,
kReturn = 0x1UL << 33,
// mem op
kAlloca = 0x1UL << 34,
kLoad = 0x1UL << 35,
kStore = 0x1UL << 36,
kFirstInst = kAdd,
kLastInst = kStore,
// others
kArgument = 0x1UL << 37,
kBasicBlock = 0x1UL << 38,
kFunction = 0x1UL << 39,
kConstant = 0x1UL << 40,
kGlobal = 0x1UL << 41,
};
protected:
Kind kind;
Type *type;
std::string name;
std::list<Use *> uses;
protected:
Value(Kind kind, Type *type, const std::string &name = "")
: kind(kind), type(type), name(name), uses() {}
public:
virtual ~Value() = default;
public:
Kind getKind() const { return kind; }
static bool classof(const Value *) { return true; }
public:
Type *getType() const { return type; }
const std::string &getName() const { return name; }
void setName(const std::string &n) { name = n; }
bool hasName() const { return not name.empty(); }
bool isInt() const { return type->isInt(); }
bool isFloat() const { return type->isFloat(); }
bool isPointer() const { return type->isPointer(); }
const std::list<Use *> &getUses() { return uses; }
void addUse(Use *use) { uses.push_back(use); }
void replaceAllUsesWith(Value *value);
void removeUse(Use *use) { uses.remove(use); }
bool isConstant() const;
public:
virtual void print(std::ostream &os) const {};
}; // class Value
/*!
* Static constants known at compile time.
*
* `ConstantValue`s are not defined by instructions, and do not use any other
* `Value`s. It's type is either `int` or `float`.
*/
class ConstantValue : public Value {
protected:
union {
int iScalar;
float fScalar;
};
protected:
ConstantValue(int value)
: Value(kConstant, Type::getIntType(), ""), iScalar(value) {}
ConstantValue(float value)
: Value(kConstant, Type::getFloatType(), ""), fScalar(value) {}
public:
static ConstantValue *get(int value);
static ConstantValue *get(float value);
public:
static bool classof(const Value *value) {
return value->getKind() == kConstant;
}
public:
int getInt() const {
assert(isInt());
return iScalar;
}
float getFloat() const {
assert(isFloat());
return fScalar;
}
public:
void print(std::ostream &os) const override;
}; // class ConstantValue
class BasicBlock;
/*!
* Arguments of `BasicBlock`s.
*
* SysY IR is an SSA language, however, it does not use PHI instructions as in
* LLVM IR. `Value`s from different predecessor blocks are passed explicitly as
* block arguments. This is also the approach used by MLIR.
* NOTE that `Function` does not own `Argument`s, function arguments are
* implemented as its entry block's arguments.
*/
class Argument : public Value {
protected:
BasicBlock *block;
int index;
public:
Argument(Type *type, BasicBlock *block, int index,
const std::string &name = "");
public:
static bool classof(const Value *value) {
return value->getKind() == kConstant;
}
public:
BasicBlock *getParent() const { return block; }
int getIndex() const { return index; }
public:
void print(std::ostream &os) const override;
};
class Instruction;
class Function;
/*!
* The container for `Instruction` sequence.
*
* `BasicBlock` maintains a list of `Instruction`s, with the last one being
* a terminator (branch or return). Besides, `BasicBlock` stores its arguments
* and records its predecessor and successor `BasicBlock`s.
*/
class BasicBlock : public Value {
friend class Function;
public:
using inst_list = std::list<std::unique_ptr<Instruction>>;
using iterator = inst_list::iterator;
using arg_list = std::vector<std::unique_ptr<Argument>>;
using block_list = std::vector<BasicBlock *>;
protected:
Function *parent;
inst_list instructions;
arg_list arguments;
block_list successors;
block_list predecessors;
protected:
explicit BasicBlock(Function *parent, const std::string &name = "");
public:
static bool classof(const Value *value) {
return value->getKind() == kBasicBlock;
}
public:
int getNumInstructions() const { return instructions.size(); }
int getNumArguments() const { return arguments.size(); }
int getNumPredecessors() const { return predecessors.size(); }
int getNumSuccessors() const { return successors.size(); }
Function *getParent() const { return parent; }
inst_list &getInstructions() { return instructions; }
auto getArguments() const { return make_range(arguments); }
block_list &getPredecessors() { return predecessors; }
block_list &getSuccessors() { return successors; }
iterator begin() { return instructions.begin(); }
iterator end() { return instructions.end(); }
iterator terminator() { return std::prev(end()); }
Argument *createArgument(Type *type, const std::string &name = "") {
auto arg = new Argument(type, this, arguments.size(), name);
assert(arg);
arguments.emplace_back(arg);
return arguments.back().get();
};
public:
void print(std::ostream &os) const override;
}; // class BasicBlock
//! User is the abstract base type of `Value` types which use other `Value` as
//! operands. Currently, there are two kinds of `User`s, `Instruction` and
//! `GlobalValue`.
class User : public Value {
protected:
std::vector<Use> operands;
protected:
User(Kind kind, Type *type, const std::string &name = "")
: Value(kind, type, name), operands() {}
public:
using use_iterator = std::vector<Use>::const_iterator;
struct operand_iterator : public std::vector<Use>::const_iterator {
using Base = std::vector<Use>::const_iterator;
operand_iterator(const Base &iter) : Base(iter) {}
using value_type = Value *;
value_type operator->() { return Base::operator*().getValue(); }
value_type operator*() { return Base::operator*().getValue(); }
};
// struct const_operand_iterator : std::vector<Use>::const_iterator {
// using Base = std::vector<Use>::const_iterator;
// const_operand_iterator(const Base &iter) : Base(iter) {}
// using value_type = Value *;
// value_type operator->() { return operator*().getValue(); }
// };
public:
int getNumOperands() const { return operands.size(); }
operand_iterator operand_begin() const { return operands.begin(); }
operand_iterator operand_end() const { return operands.end(); }
auto getOperands() const {
return make_range(operand_begin(), operand_end());
}
Value *getOperand(int index) const { return operands[index].getValue(); }
void addOperand(Value *value) {
operands.emplace_back(operands.size(), this, value);
value->addUse(&operands.back());
}
template <typename ContainerT> void addOperands(const ContainerT &operands) {
for (auto value : operands)
addOperand(value);
}
void replaceOperand(int index, Value *value);
void setOperand(int index, Value *value);
}; // class User
/*!
* Base of all concrete instruction types.
*/
class Instruction : public User {
public:
// enum Kind : uint64_t {
// kInvalid = 0x0UL,
// // Binary
// kAdd = 0x1UL << 0,
// kSub = 0x1UL << 1,
// kMul = 0x1UL << 2,
// kDiv = 0x1UL << 3,
// kRem = 0x1UL << 4,
// kICmpEQ = 0x1UL << 5,
// kICmpNE = 0x1UL << 6,
// kICmpLT = 0x1UL << 7,
// kICmpGT = 0x1UL << 8,
// kICmpLE = 0x1UL << 9,
// kICmpGE = 0x1UL << 10,
// kFAdd = 0x1UL << 14,
// kFSub = 0x1UL << 15,
// kFMul = 0x1UL << 16,
// kFDiv = 0x1UL << 17,
// kFRem = 0x1UL << 18,
// kFCmpEQ = 0x1UL << 19,
// kFCmpNE = 0x1UL << 20,
// kFCmpLT = 0x1UL << 21,
// kFCmpGT = 0x1UL << 22,
// kFCmpLE = 0x1UL << 23,
// kFCmpGE = 0x1UL << 24,
// // Unary
// kNeg = 0x1UL << 25,
// kNot = 0x1UL << 26,
// kFNeg = 0x1UL << 27,
// kFtoI = 0x1UL << 28,
// kIToF = 0x1UL << 29,
// // call
// kCall = 0x1UL << 30,
// // terminator
// kCondBr = 0x1UL << 31,
// kBr = 0x1UL << 32,
// kReturn = 0x1UL << 33,
// // mem op
// kAlloca = 0x1UL << 34,
// kLoad = 0x1UL << 35,
// kStore = 0x1UL << 36,
// // constant
// // kConstant = 0x1UL << 37,
// };
protected:
Kind kind;
BasicBlock *parent;
protected:
Instruction(Kind kind, Type *type, BasicBlock *parent = nullptr,
const std::string &name = "");
public:
static bool classof(const Value *value) {
return value->getKind() >= kFirstInst and value->getKind() <= kLastInst;
}
public:
Kind getKind() const { return kind; }
BasicBlock *getParent() const { return parent; }
Function *getFunction() const { return parent->getParent(); }
void setParent(BasicBlock *bb) { parent = bb; }
bool isBinary() const {
static constexpr uint64_t BinaryOpMask =
(kAdd | kSub | kMul | kDiv | kRem) |
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
(kFAdd | kFSub | kFMul | kFDiv | kFRem) |
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
return kind & BinaryOpMask;
}
bool isUnary() const {
static constexpr uint64_t UnaryOpMask = kNeg | kNot | kFNeg | kFtoI | kIToF;
return kind & UnaryOpMask;
}
bool isMemory() const {
static constexpr uint64_t MemoryOpMask = kAlloca | kLoad | kStore;
return kind & MemoryOpMask;
}
bool isTerminator() const {
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn;
return kind & TerminatorOpMask;
}
bool isCmp() const {
static constexpr uint64_t CmpOpMask =
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
return kind & CmpOpMask;
}
bool isBranch() const {
static constexpr uint64_t BranchOpMask = kBr | kCondBr;
return kind & BranchOpMask;
}
bool isCommutative() const {
static constexpr uint64_t CommutativeOpMask =
kAdd | kMul | kICmpEQ | kICmpNE | kFAdd | kFMul | kFCmpEQ | kFCmpNE;
return kind & CommutativeOpMask;
}
bool isUnconditional() const { return kind == kBr; }
bool isConditional() const { return kind == kCondBr; }
}; // class Instruction
class Function;
//! Function call.
class CallInst : public Instruction {
friend class IRBuilder;
protected:
CallInst(Function *callee, const std::vector<Value *> &args = {},
BasicBlock *parent = nullptr, const std::string &name = "");
public:
static bool classof(const Value *value) { return value->getKind() == kCall; }
public:
Function *getCallee() const;
auto getArguments() const {
return make_range(std::next(operand_begin()), operand_end());
}
public:
void print(std::ostream &os) const override;
}; // class CallInst
//! Unary instruction, includes '!', '-' and type conversion.
class UnaryInst : public Instruction {
friend class IRBuilder;
protected:
UnaryInst(Kind kind, Type *type, Value *operand, BasicBlock *parent = nullptr,
const std::string &name = "")
: Instruction(kind, type, parent, name) {
addOperand(operand);
}
public:
static bool classof(const Value *value) {
return Instruction::classof(value) and
static_cast<const Instruction *>(value)->isUnary();
}
public:
Value *getOperand() const { return User::getOperand(0); }
public:
void print(std::ostream &os) const override;
}; // class UnaryInst
//! Binary instruction, e.g., arithmatic, relation, logic, etc.
class BinaryInst : public Instruction {
friend class IRBuilder;
protected:
BinaryInst(Kind kind, Type *type, Value *lhs, Value *rhs, BasicBlock *parent,
const std::string &name = "")
: Instruction(kind, type, parent, name) {
addOperand(lhs);
addOperand(rhs);
}
public:
static bool classof(const Value *value) {
return Instruction::classof(value) and
static_cast<const Instruction *>(value)->isBinary();
}
public:
Value *getLhs() const { return getOperand(0); }
Value *getRhs() const { return getOperand(1); }
public:
void print(std::ostream &os) const override;
}; // class BinaryInst
//! The return statement
class ReturnInst : public Instruction {
friend class IRBuilder;
protected:
ReturnInst(Value *value = nullptr, BasicBlock *parent = nullptr)
: Instruction(kReturn, Type::getVoidType(), parent, "") {
if (value)
addOperand(value);
}
public:
static bool classof(const Value *value) {
return value->getKind() == kReturn;
}
public:
bool hasReturnValue() const { return not operands.empty(); }
Value *getReturnValue() const {
return hasReturnValue() ? getOperand(0) : nullptr;
}
public:
void print(std::ostream &os) const override;
}; // class ReturnInst
//! Unconditional branch
class UncondBrInst : public Instruction {
friend class IRBuilder;
protected:
UncondBrInst(BasicBlock *block, std::vector<Value *> args,
BasicBlock *parent = nullptr)
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
assert(block->getNumArguments() == args.size());
addOperand(block);
addOperands(args);
}
public:
static bool classof(const Value *value) { return value->getKind() == kBr; }
public:
BasicBlock *getBlock() const { return dyncast<BasicBlock>(getOperand(0)); }
auto getArguments() const {
return make_range(std::next(operand_begin()), operand_end());
}
public:
void print(std::ostream &os) const override;
}; // class UncondBrInst
//! Conditional branch
class CondBrInst : public Instruction {
friend class IRBuilder;
protected:
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
const std::vector<Value *> &thenArgs,
const std::vector<Value *> &elseArgs, BasicBlock *parent = nullptr)
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
assert(thenBlock->getNumArguments() == thenArgs.size() and
elseBlock->getNumArguments() == elseArgs.size());
addOperand(condition);
addOperand(thenBlock);
addOperand(elseBlock);
addOperands(thenArgs);
addOperands(elseArgs);
}
public:
static bool classof(const Value *value) {
return value->getKind() == kCondBr;
}
public:
Value *getCondition() const { return getOperand(0); }
BasicBlock *getThenBlock() const {
return dyncast<BasicBlock>(getOperand(1));
}
BasicBlock *getElseBlock() const {
return dyncast<BasicBlock>(getOperand(2));
}
auto getThenArguments() const {
auto begin = std::next(operand_begin(), 3);
auto end = std::next(begin, getThenBlock()->getNumArguments());
return make_range(begin, end);
}
auto getElseArguments() const {
auto begin =
std::next(operand_begin(), 3 + getThenBlock()->getNumArguments());
auto end = operand_end();
return make_range(begin, end);
}
public:
void print(std::ostream &os) const override;
}; // class CondBrInst
//! Allocate memory for stack variables, used for non-global variable declartion
class AllocaInst : public Instruction {
friend class IRBuilder;
protected:
AllocaInst(Type *type, const std::vector<Value *> &dims = {},
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kAlloca, type, parent, name) {
addOperands(dims);
}
public:
static bool classof(const Value *value) {
return value->getKind() == kAlloca;
}
public:
int getNumDims() const { return getNumOperands(); }
auto getDims() const { return getOperands(); }
Value *getDim(int index) { return getOperand(index); }
public:
void print(std::ostream &os) const override;
}; // class AllocaInst
//! Load a value from memory address specified by a pointer value
class LoadInst : public Instruction {
friend class IRBuilder;
protected:
LoadInst(Value *pointer, const std::vector<Value *> &indices = {},
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kLoad, pointer->getType()->as<PointerType>()->getBaseType(),
parent, name) {
addOperand(pointer);
addOperands(indices);
}
public:
static bool classof(const Value *value) { return value->getKind() == kLoad; }
public:
int getNumIndices() const { return getNumOperands() - 1; }
Value *getPointer() const { return getOperand(0); }
auto getIndices() const {
return make_range(std::next(operand_begin()), operand_end());
}
Value *getIndex(int index) const { return getOperand(index + 1); }
public:
void print(std::ostream &os) const override;
}; // class LoadInst
//! Store a value to memory address specified by a pointer value
class StoreInst : public Instruction {
friend class IRBuilder;
protected:
StoreInst(Value *value, Value *pointer,
const std::vector<Value *> &indices = {},
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kStore, Type::getVoidType(), parent, name) {
addOperand(value);
addOperand(pointer);
addOperands(indices);
}
public:
static bool classof(const Value *value) { return value->getKind() == kStore; }
public:
int getNumIndices() const { return getNumOperands() - 2; }
Value *getValue() const { return getOperand(0); }
Value *getPointer() const { return getOperand(1); }
auto getIndices() const {
return make_range(std::next(operand_begin(), 2), operand_end());
}
Value *getIndex(int index) const { return getOperand(index + 2); }
public:
void print(std::ostream &os) const override;
}; // class StoreInst
class Module;
//! Function definition
class Function : public Value {
friend class Module;
protected:
Function(Module *parent, Type *type, const std::string &name)
: Value(kFunction, type, name), parent(parent), variableID(0), blocks() {
blocks.emplace_back(new BasicBlock(this, "entry"));
}
public:
static bool classof(const Value *value) {
return value->getKind() == kFunction;
}
public:
using block_list = std::list<std::unique_ptr<BasicBlock>>;
protected:
Module *parent;
int variableID;
int blockID;
block_list blocks;
public:
Type *getReturnType() const {
return getType()->as<FunctionType>()->getReturnType();
}
auto getParamTypes() const {
return getType()->as<FunctionType>()->getParamTypes();
}
auto getBasicBlocks() const { return make_range(blocks); }
BasicBlock *getEntryBlock() const { return blocks.front().get(); }
BasicBlock *addBasicBlock(const std::string &name = "") {
blocks.emplace_back(new BasicBlock(this, name));
return blocks.back().get();
}
void removeBasicBlock(BasicBlock *block) {
blocks.remove_if([&](std::unique_ptr<BasicBlock> &b) -> bool {
return block == b.get();
});
}
int allocateVariableID() { return variableID++; }
int allocateblockID() { return blockID++; }
public:
void print(std::ostream &os) const override;
}; // class Function
// class ArrayValue : public User {
// protected:
// ArrayValue(Type *type, const std::vector<Value *> &values = {})
// : User(type, "") {
// addOperands(values);
// }
// public:
// static ArrayValue *get(Type *type, const std::vector<Value *> &values);
// static ArrayValue *get(const std::vector<int> &values);
// static ArrayValue *get(const std::vector<float> &values);
// public:
// auto getValues() const { return getOperands(); }
// public:
// void print(std::ostream &os) const override{};
// }; // class ConstantArray
//! Global value declared at file scope
class GlobalValue : public User {
friend class Module;
protected:
Module *parent;
bool hasInit;
bool isConst;
protected:
GlobalValue(Module *parent, Type *type, const std::string &name,
const std::vector<Value *> &dims = {}, Value *init = nullptr)
: User(kGlobal, type, name), parent(parent), hasInit(init) {
assert(type->isPointer());
addOperands(dims);
if (init)
addOperand(init);
}
public:
static bool classof(const Value *value) {
return value->getKind() == kGlobal;
}
public:
Value *init() const { return hasInit ? operands.back().getValue() : nullptr; }
int getNumDims() const { return getNumOperands() - (hasInit ? 1 : 0); }
Value *getDim(int index) { return getOperand(index); }
public:
void print(std::ostream &os) const override{};
}; // class GlobalValue
//! IR unit for representing a SysY compile unit
class Module {
protected:
std::vector<std::unique_ptr<Value>> children;
std::map<std::string, Function *> functions;
std::map<std::string, GlobalValue *> globals;
public:
Module() = default;
public:
Function *createFunction(const std::string &name, Type *type) {
if (functions.count(name))
return nullptr;
auto func = new Function(this, type, name);
assert(func);
children.emplace_back(func);
functions.emplace(name, func);
return func;
};
GlobalValue *createGlobalValue(const std::string &name, Type *type,
const std::vector<Value *> &dims = {},
Value *init = nullptr) {
if (globals.count(name))
return nullptr;
auto global = new GlobalValue(this, type, name, dims, init);
assert(global);
children.emplace_back(global);
globals.emplace(name, global);
return global;
}
Function *getFunction(const std::string &name) const {
auto result = functions.find(name);
if (result == functions.end())
return nullptr;
return result->second;
}
GlobalValue *getGlobalValue(const std::string &name) const {
auto result = globals.find(name);
if (result == globals.end())
return nullptr;
return result->second;
}
std::map<std::string, Function *> *getFunctions(){
return &functions;
}
std::map<std::string, GlobalValue *> *getGlobalValues(){
return &globals;
}
public:
void print(std::ostream &os) const;
}; // class Module
/*!
* @}
*/
inline std::ostream &operator<<(std::ostream &os, const Type &type) {
type.print(os);
return os;
}
inline std::ostream &operator<<(std::ostream &os, const Value &value) {
value.print(os);
return os;
}
} // namespace sysy