Merge branch 'backend' into deploy-20250820

This commit is contained in:
Lixuanwang
2025-08-20 03:17:50 +08:00
16 changed files with 378 additions and 79 deletions

View File

@@ -256,13 +256,15 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
<< ss_after_eli.str(); << ss_after_eli.str();
} }
// 阶段 2.1: 除法强度削弱优化 (Division Strength Reduction) if (optLevel > 0) {
DivStrengthReduction div_strength_reduction; // 阶段 2.1: 除法强度削弱优化 (Division Strength Reduction)
div_strength_reduction.runOnMachineFunction(mfunc.get()); DivStrengthReduction div_strength_reduction;
div_strength_reduction.runOnMachineFunction(mfunc.get());
// // 阶段 2.2: 指令调度 (Instruction Scheduling) // 阶段 2.2: 指令调度 (Instruction Scheduling)
// PreRA_Scheduler scheduler; PreRA_Scheduler scheduler;
// scheduler.runOnMachineFunction(mfunc.get()); scheduler.runOnMachineFunction(mfunc.get());
}
// 阶段 3: 物理寄存器分配 (Register Allocation) // 阶段 3: 物理寄存器分配 (Register Allocation)
bool allocation_succeeded = false; bool allocation_succeeded = false;
@@ -370,13 +372,15 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
mfunc->dumpStackFrameInfo(std::cerr); mfunc->dumpStackFrameInfo(std::cerr);
} }
// 阶段 4: 窥孔优化 (Peephole Optimization) if (optLevel > 0) {
PeepholeOptimizer peephole; // 阶段 4: 窥孔优化 (Peephole Optimization)
peephole.runOnMachineFunction(mfunc.get()); PeepholeOptimizer peephole;
peephole.runOnMachineFunction(mfunc.get());
// // 阶段 5: 局部指令调度 (Local Scheduling) // 阶段 5: 局部指令调度 (Local Scheduling)
// PostRA_Scheduler local_scheduler; PostRA_Scheduler local_scheduler;
// local_scheduler.runOnMachineFunction(mfunc.get()); local_scheduler.runOnMachineFunction(mfunc.get());
}
// 阶段 3.2: 插入序言和尾声 // 阶段 3.2: 插入序言和尾声
PrologueEpilogueInsertionPass pei_pass; PrologueEpilogueInsertionPass pei_pass;

View File

@@ -103,7 +103,29 @@ void RISCv64ISel::select() {
} }
} }
if (optLevel > 0) { // 仅当函数满足特定条件时,才需要保存参数寄存器,应用更精细的过滤规则
// 1. 函数包含call指令 (非叶子函数): 参数寄存器(a0-a7)是调用者保存的,
// call指令可能会覆盖这些寄存器因此必须保存。
// 2. 函数包含alloca指令 (需要栈分配)。
// 3. 函数的指令数量超过一个阈值如20意味着它是一个复杂的叶子函数
// 为安全起见,保存其参数。
// 简单的叶子函数 (如min) 则可以跳过这个步骤进行优化。
auto shouldSaveArgs = [](Function* func) {
if (!func) return false;
int instruction_count = 0;
for (const auto& bb : func->getBasicBlocks()) {
for (const auto& inst : bb->getInstructions()) {
if (dynamic_cast<CallInst*>(inst.get()) || dynamic_cast<AllocaInst*>(inst.get())) {
return true; // 发现call或alloca立即返回true
}
instruction_count++;
}
}
// 如果没有call或alloca则检查指令数量
return instruction_count > 45;
};
if (optLevel > 0 && shouldSaveArgs(F)) {
if (F && !F->getBasicBlocks().empty()) { if (F && !F->getBasicBlocks().empty()) {
// 定位到第一个MachineBasicBlock也就是函数入口 // 定位到第一个MachineBasicBlock也就是函数入口
BasicBlock* first_ir_block = F->getBasicBlocks_NoRange().front().get(); BasicBlock* first_ir_block = F->getBasicBlocks_NoRange().front().get();
@@ -129,11 +151,11 @@ void RISCv64ISel::select() {
mv->addOperand(std::make_unique<RegOperand>(original_vreg)); mv->addOperand(std::make_unique<RegOperand>(original_vreg));
CurMBB->addInstruction(std::move(mv)); CurMBB->addInstruction(std::move(mv));
MFunc->addProtectedArgumentVReg(saved_vreg);
// 4.【关键】更新vreg映射表将arg的vreg指向新的、安全的vreg // 4.【关键】更新vreg映射表将arg的vreg指向新的、安全的vreg
// 这样,后续所有对该参数的 getVReg(arg) 调用都会自动获得 saved_vreg // 这样,后续所有对该参数的 getVReg(arg) 调用都会自动获得 saved_vreg
// 使得函数体内的代码都使用这个被保存过的值。 // 使得函数体内的代码都使用这个被保存过的值。
vreg_map[arg] = saved_vreg; vreg_map[arg] = saved_vreg;
int_arg_idx++; int_arg_idx++;
} }
// --- 处理浮点参数 --- // --- 处理浮点参数 ---
@@ -147,9 +169,8 @@ void RISCv64ISel::select() {
fmv->addOperand(std::make_unique<RegOperand>(original_vreg)); fmv->addOperand(std::make_unique<RegOperand>(original_vreg));
CurMBB->addInstruction(std::move(fmv)); CurMBB->addInstruction(std::move(fmv));
// 同样更新映射 MFunc->addProtectedArgumentVReg(saved_vreg);
vreg_map[arg] = saved_vreg; vreg_map[arg] = saved_vreg;
fp_arg_idx++; fp_arg_idx++;
} }
// 对于栈传递的参数,则无需处理 // 对于栈传递的参数,则无需处理
@@ -565,6 +586,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(instr)); CurMBB->addInstruction(std::move(instr));
break; break;
} }
case BinaryInst::kMulh: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
case Instruction::kDiv: { case Instruction::kDiv: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::DIVW); auto instr = std::make_unique<MachineInstr>(RVOpcodes::DIVW);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg)); instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
@@ -676,6 +705,22 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(xori)); CurMBB->addInstruction(std::move(xori));
break; break;
} }
case BinaryInst::kAnd: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::AND);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
case BinaryInst::kOr: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::OR);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
default: default:
throw std::runtime_error("Unsupported binary instruction in ISel"); throw std::runtime_error("Unsupported binary instruction in ISel");
} }
@@ -1321,6 +1366,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
auto gep = dynamic_cast<GetElementPtrInst*>(node->value); auto gep = dynamic_cast<GetElementPtrInst*>(node->value);
auto result_vreg = getVReg(gep); auto result_vreg = getVReg(gep);
if (optLevel == 0) {
// --- Step 1: 获取基地址 (此部分逻辑正确,保持不变) --- // --- Step 1: 获取基地址 (此部分逻辑正确,保持不变) ---
auto base_ptr_node = node->operands[0]; auto base_ptr_node = node->operands[0];
auto current_addr_vreg = getNewVReg(gep->getType()); auto current_addr_vreg = getNewVReg(gep->getType());
@@ -1427,6 +1473,106 @@ void RISCv64ISel::selectNode(DAGNode* node) {
final_mv->addOperand(std::make_unique<RegOperand>(current_addr_vreg)); final_mv->addOperand(std::make_unique<RegOperand>(current_addr_vreg));
CurMBB->addInstruction(std::move(final_mv)); CurMBB->addInstruction(std::move(final_mv));
break; break;
} else {
// 对于-O1时的处理逻辑
// --- Step 1: 获取基地址 ---
auto base_ptr_node = node->operands[0];
auto base_ptr_val = base_ptr_node->value;
// last_step_addr_vreg 保存上一步计算的结果。
// 它首先被初始化为GEP的初始基地址。
unsigned last_step_addr_vreg;
if (auto alloca_base = dynamic_cast<AllocaInst*>(base_ptr_val)) {
last_step_addr_vreg = getNewVReg(gep->getType());
auto frame_addr_instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
frame_addr_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
frame_addr_instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca_base)));
CurMBB->addInstruction(std::move(frame_addr_instr));
} else if (auto global_base = dynamic_cast<GlobalValue*>(base_ptr_val)) {
last_step_addr_vreg = getNewVReg(gep->getType());
auto la_instr = std::make_unique<MachineInstr>(RVOpcodes::LA);
la_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
la_instr->addOperand(std::make_unique<LabelOperand>(global_base->getName()));
CurMBB->addInstruction(std::move(la_instr));
} else {
// 对于函数参数或来自其他指令的指针直接获取其vreg。
// 这个vreg必须被保护不能在计算中被修改。
last_step_addr_vreg = getVReg(base_ptr_val);
}
// --- Step 2: 遵循LLVM GEP语义迭代计算地址 ---
Type* current_type = gep->getBasePointer()->getType()->as<PointerType>()->getBaseType();
for (size_t i = 0; i < gep->getNumIndices(); ++i) {
Value* indexValue = gep->getIndex(i);
unsigned stride = getTypeSizeInBytes(current_type);
if (stride != 0) {
// --- 为当前索引和步长生成偏移计算指令 ---
auto offset_vreg = getNewVReg(Type::getIntType());
unsigned index_vreg;
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
index_vreg = getNewVReg(Type::getIntType());
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
li->addOperand(std::make_unique<RegOperand>(index_vreg));
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
CurMBB->addInstruction(std::move(li));
} else {
index_vreg = getVReg(indexValue);
}
if (stride == 1) {
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
mv->addOperand(std::make_unique<RegOperand>(offset_vreg));
mv->addOperand(std::make_unique<RegOperand>(index_vreg));
CurMBB->addInstruction(std::move(mv));
} else {
auto size_vreg = getNewVReg(Type::getIntType());
auto li_size = std::make_unique<MachineInstr>(RVOpcodes::LI);
li_size->addOperand(std::make_unique<RegOperand>(size_vreg));
li_size->addOperand(std::make_unique<ImmOperand>(stride));
CurMBB->addInstruction(std::move(li_size));
auto mul = std::make_unique<MachineInstr>(RVOpcodes::MULW);
mul->addOperand(std::make_unique<RegOperand>(offset_vreg));
mul->addOperand(std::make_unique<RegOperand>(index_vreg));
mul->addOperand(std::make_unique<RegOperand>(size_vreg));
CurMBB->addInstruction(std::move(mul));
}
// --- 关键修复点 ---
// 创建一个新的vreg来保存本次加法的结果。
unsigned current_step_addr_vreg = getNewVReg(gep->getType());
// 执行 add current_step, last_step, offset
// 这确保了 last_step_addr_vreg (输入) 永远不会被直接修改。
auto add = std::make_unique<MachineInstr>(RVOpcodes::ADD);
add->addOperand(std::make_unique<RegOperand>(current_step_addr_vreg));
add->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
add->addOperand(std::make_unique<RegOperand>(offset_vreg));
CurMBB->addInstruction(std::move(add));
// 本次的结果成为下一次计算的输入。
last_step_addr_vreg = current_step_addr_vreg;
}
// --- 为下一次迭代更新类型 ---
if (auto array_type = current_type->as<ArrayType>()) {
current_type = array_type->getElementType();
} else if (auto ptr_type = current_type->as<PointerType>()) {
current_type = ptr_type->getBaseType();
}
}
// --- Step 3: 将最终计算出的地址存入GEP的目标虚拟寄存器 ---
auto final_mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
final_mv->addOperand(std::make_unique<RegOperand>(result_vreg));
final_mv->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
CurMBB->addInstruction(std::move(final_mv));
break;
}
} }
default: default:

View File

@@ -98,6 +98,7 @@ bool RISCv64RegAlloc::doAllocation() {
precolorByCallingConvention(); precolorByCallingConvention();
analyzeLiveness(); analyzeLiveness();
build(); build();
protectCrossCallVRegs();
makeWorklist(); makeWorklist();
while (!simplifyWorklist.empty() || !worklistMoves.empty() || !freezeWorklist.empty() || !spillWorklist.empty()) { while (!simplifyWorklist.empty() || !worklistMoves.empty() || !freezeWorklist.empty() || !spillWorklist.empty()) {
@@ -185,6 +186,57 @@ void RISCv64RegAlloc::precolorByCallingConvention() {
} }
} }
void RISCv64RegAlloc::protectCrossCallVRegs() {
// 从ISel获取被标记为需要保护的参数副本vreg集合
const auto& vregs_to_protect_potentially = MFunc->getProtectedArgumentVRegs();
if (vregs_to_protect_potentially.empty()) {
return; // 如果没有需要保护的vreg直接返回
}
// VRegSet live_across_call_vregs;
// // 遍历所有指令找出哪些被标记的vreg其生命周期确实跨越了call指令
// for (const auto& mbb_ptr : MFunc->getBlocks()) {
// for (const auto& instr_ptr : mbb_ptr->getInstructions()) {
// if (instr_ptr->getOpcode() == RVOpcodes::CALL) {
// const VRegSet& live_out_after_call = live_out_map.at(instr_ptr.get());
// for (unsigned vreg : vregs_to_protect_potentially) {
// if (live_out_after_call.count(vreg)) {
// live_across_call_vregs.insert(vreg);
// }
// }
// }
// }
// }
// if (live_across_call_vregs.empty()) {
// return; // 如果被标记的vreg没有一个跨越call也无需操作
// }
// if (DEEPDEBUG) {
// std::cerr << "--- [FIX] Applying protection for argument vregs that live across calls: ";
// for(unsigned v : live_across_call_vregs) std::cerr << regIdToString(v) << " ";
// std::cerr << "\n";
// }
// 获取所有调用者保存寄存器
const auto& caller_saved_int = getCallerSavedIntRegs();
const auto& caller_saved_fp = getCallerSavedFpRegs();
const unsigned offset = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID);
// 为每个确认跨越call的vreg添加与所有调用者保存寄存器的冲突
for (unsigned vreg : vregs_to_protect_potentially) {
if (isFPVReg(vreg)) { // 如果是浮点vreg
for (auto preg : caller_saved_fp) {
addEdge(vreg, offset + static_cast<unsigned>(preg));
}
} else { // 如果是整数vreg
for (auto preg : caller_saved_int) {
addEdge(vreg, offset + static_cast<unsigned>(preg));
}
}
}
}
// 初始化/重置所有数据结构 // 初始化/重置所有数据结构
void RISCv64RegAlloc::initialize() { void RISCv64RegAlloc::initialize() {
initial.clear(); initial.clear();
@@ -504,12 +556,20 @@ void RISCv64RegAlloc::coalesce() {
unsigned y = getAlias(*use.begin()); unsigned y = getAlias(*use.begin());
unsigned u, v; unsigned u, v;
// 进一步修正标准化u和v的逻辑必须同时考虑物理寄存器和已预着色的虚拟寄存器 // 总是将待合并的虚拟寄存器赋给 v将合并目标赋给 u
// 目标是确保如果两个操作数中有一个是预着色的,它一定会被赋给 u // 优先级: 物理寄存器 (precolored) > 已着色的虚拟寄存器 (coloredNodes) > 普通虚拟寄存器
if (precolored.count(y) || coloredNodes.count(y)) { if (precolored.count(y)) {
u = y; v = x; u = y;
} else { v = x;
u = x; v = y; } else if (precolored.count(x)) {
u = x;
v = y;
} else if (coloredNodes.count(y)) {
u = y;
v = x;
} else {
u = x;
v = y;
} }
// 防御性检查,处理物理寄存器之间的传送指令 // 防御性检查,处理物理寄存器之间的传送指令
@@ -528,7 +588,75 @@ void RISCv64RegAlloc::coalesce() {
addWorklist(u); addWorklist(u);
return; return;
} }
bool is_conflicting = false;
// 检查1u 和 v 在冲突图中是否直接相连
if ((adjList.count(v) && adjList.at(v).count(u)) || (adjList.count(u) && adjList.at(u).count(v))) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Nodes interfere directly.\n";
is_conflicting = true;
}
// 检查2如果节点不直接相连则检查是否存在间接的颜色冲突
else {
// 获取 u 和 v 的颜色(如果它们有的话)
unsigned u_color_id = 0, v_color_id = 0;
if (precolored.count(u)) {
u_color_id = u;
} else if (coloredNodes.count(u) || color_map.count(u)) { // color_map.count(u) 是更可靠的检查
u_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(u));
}
if (precolored.count(v)) {
v_color_id = v;
} else if (coloredNodes.count(v) || color_map.count(v)) {
v_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(v));
}
// 如果 u 有颜色,检查 v 是否与该颜色代表的物理寄存器冲突
if (u_color_id != 0 && adjList.count(v) && adjList.at(v).count(u_color_id)) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(v) << " interferes with the color of " << regIdToString(u) << " (" << regIdToString(u_color_id) << ").\n";
is_conflicting = true;
}
// 如果 v 有颜色,检查 u 是否与该颜色代表的物理寄存器冲突
else if (v_color_id != 0 && adjList.count(u) && adjList.at(u).count(v_color_id)) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(u) << " interferes with the color of " << regIdToString(v) << " (" << regIdToString(v_color_id) << ").\n";
is_conflicting = true;
}
}
if (is_conflicting) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes interfere directly or via pre-coloring).\n";
constrainedMoves.insert(move);
addWorklist(u);
addWorklist(v);
return;
}
bool u_is_colored = precolored.count(u) || coloredNodes.count(u);
bool v_is_colored = precolored.count(v) || coloredNodes.count(v);
if (u_is_colored && v_is_colored) {
PhysicalReg u_color = precolored.count(u)
? static_cast<PhysicalReg>(u - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
: color_map.at(u);
PhysicalReg v_color = precolored.count(v)
? static_cast<PhysicalReg>(v - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
: color_map.at(v);
if (u_color != v_color) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (move between two different precolored nodes: "
<< regToString(u_color) << " and " << regToString(v_color) << ").\n";
constrainedMoves.insert(move);
return;
} else {
if (DEEPERDEBUG) std::cerr << " -> Trivial coalesce (move between same precolored nodes).\n";
coalescedMoves.insert(move);
combine(u, v);
addWorklist(u);
return;
}
}
// 类型检查
if (isFPVReg(u) != isFPVReg(v)) { if (isFPVReg(u) != isFPVReg(v)) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (type mismatch: " << regIdToString(u) << " is " if (DEEPERDEBUG) std::cerr << " -> Constrained (type mismatch: " << regIdToString(u) << " is "
<< (isFPVReg(u) ? "float" : "int") << ", " << regIdToString(v) << " is " << (isFPVReg(u) ? "float" : "int") << ", " << regIdToString(v) << " is "
@@ -539,25 +667,11 @@ void RISCv64RegAlloc::coalesce() {
return; return;
} }
// 注意如果v已经是u的邻居 pre_interfere 会为true。 // 启发式判断逻辑
// 但如果v不在adjList中例如v是预着色节点我们需要检查u是否在v的邻居中。
// 为了简化我们假设adjList包含了所有虚拟寄存器。对于(Phys, Virt)对冲突信息存储在Virt节点的邻接表中。
bool pre_interfere = (adjList.count(v) && adjList.at(v).count(u)) || (adjList.count(u) && adjList.at(u).count(v));
if (pre_interfere) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes already interfere).\n";
constrainedMoves.insert(move);
addWorklist(u);
addWorklist(v);
return;
}
// 考虑物理寄存器和已预着色的虚拟寄存器
bool u_is_effectively_precolored = precolored.count(u) || coloredNodes.count(u); bool u_is_effectively_precolored = precolored.count(u) || coloredNodes.count(u);
bool can_coalesce = false; bool can_coalesce = false;
if (u_is_effectively_precolored) { if (u_is_effectively_precolored) {
// --- 场景1u是物理寄存器或已预着色虚拟寄存器使用 George 启发式 ---
if (DEEPERDEBUG) std::cerr << " -> Trying George Heuristic (u is effectively precolored)...\n"; if (DEEPERDEBUG) std::cerr << " -> Trying George Heuristic (u is effectively precolored)...\n";
VRegSet neighbors_of_v = adjacent(v); VRegSet neighbors_of_v = adjacent(v);
@@ -1227,11 +1341,7 @@ bool RISCv64RegAlloc::georgeHeuristic(unsigned t, unsigned u) {
int K = isFPVReg(t) ? K_fp : K_int; int K = isFPVReg(t) ? K_fp : K_int;
// 缺陷 #2 修正: 移除了致命的 || precolored.count(u) 条件。 return degree.at(t) < K || adjList.at(t).count(u);
// 在此函数的上下文中u 总是预着色的物理寄存器ID导致旧的条件永远为true使整个启发式失效。
// 正确的逻辑是检查邻居t的度数是否小于K或者t是否已经与u冲突。
// return degree.at(t) < K || adjList.at(t).count(u);
return degree.at(t) < K || !adjList.at(t).count(u);
} }
void RISCv64RegAlloc::combine(unsigned u, unsigned v) { void RISCv64RegAlloc::combine(unsigned u, unsigned v) {

View File

@@ -6,6 +6,7 @@
extern int DEBUG; extern int DEBUG;
extern int DEEPDEBUG; extern int DEEPDEBUG;
extern int optLevel;
namespace sysy { namespace sysy {

View File

@@ -326,12 +326,19 @@ public:
void addBlock(std::unique_ptr<MachineBasicBlock> block) { void addBlock(std::unique_ptr<MachineBasicBlock> block) {
blocks.push_back(std::move(block)); blocks.push_back(std::move(block));
} }
void addProtectedArgumentVReg(unsigned vreg) {
protected_argument_vregs.insert(vreg);
}
const std::set<unsigned>& getProtectedArgumentVRegs() const {
return protected_argument_vregs;
}
private: private:
Function* F; Function* F;
RISCv64ISel* isel; // 指向创建它的ISel用于获取vreg映射等信息 RISCv64ISel* isel; // 指向创建它的ISel用于获取vreg映射等信息
std::string name; std::string name;
std::vector<std::unique_ptr<MachineBasicBlock>> blocks; std::vector<std::unique_ptr<MachineBasicBlock>> blocks;
StackFrameInfo frame_info; StackFrameInfo frame_info;
std::set<unsigned> protected_argument_vregs;
}; };
inline bool isMemoryOp(RVOpcodes opcode) { inline bool isMemoryOp(RVOpcodes opcode) {
switch (opcode) { switch (opcode) {

View File

@@ -45,12 +45,11 @@ private:
void rewriteProgram(); void rewriteProgram();
bool doAllocation(); bool doAllocation();
void applyColoring(); void applyColoring();
void dumpState(const std::string &stage);
void precolorByCallingConvention(); void precolorByCallingConvention();
void protectCrossCallVRegs();
// --- 辅助函数 --- // --- 辅助函数 ---
void dumpState(const std::string &stage);
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def); void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def); void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
void addEdge(unsigned u, unsigned v); void addEdge(unsigned u, unsigned v);

View File

@@ -1007,6 +1007,7 @@ class PhiInst : public Instruction {
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue); void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
void refreshMap() { void refreshMap() {
blk2val.clear(); blk2val.clear();
vsize = getNumOperands() / 2;
for (unsigned i = 0; i < vsize; ++i) { for (unsigned i = 0; i < vsize; ++i) {
blk2val[getIncomingBlock(i)] = getIncomingValue(i); blk2val[getIncomingBlock(i)] = getIncomingValue(i);
} }

View File

@@ -109,6 +109,34 @@ public:
} }
// PHI指令消除相关方法
static bool eliminateRedundantPhisInFunction(Function* func){
bool changed = false;
std::vector<Instruction *> toDelete;
for (auto &bb : func->getBasicBlocks()) {
for (auto &inst : bb->getInstructions()) {
if (auto phi = dynamic_cast<PhiInst *>(inst.get())) {
auto incoming = phi->getIncomingValues();
if(DEBUG){
std::cout << "Checking Phi: " << phi->getName() << " with " << incoming.size() << " incoming values." << std::endl;
}
if (incoming.size() == 1) {
Value *singleVal = incoming[0].second;
inst->replaceAllUsesWith(singleVal);
toDelete.push_back(inst.get());
}
}
else
break; // 只处理Phi指令
}
}
for (auto *phi : toDelete) {
usedelete(phi);
changed = true; // 标记为已更改
}
return changed; // 返回是否有删除发生
}
//该实现参考了libdivide的算法 //该实现参考了libdivide的算法
static std::pair<int, int> computeMulhMagicNumbers(int divisor) { static std::pair<int, int> computeMulhMagicNumbers(int divisor) {

View File

@@ -757,7 +757,7 @@ void BinaryInst::print(std::ostream &os) const {
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs())); auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs())); auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2); size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000); std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000007);
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " "; os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
printOperand(os, getLhs()); printOperand(os, getLhs());
os << ", "; os << ", ";
@@ -772,7 +772,7 @@ void BinaryInst::print(std::ostream &os) const {
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs())); auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs())); auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2); size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000); std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000007);
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " "; os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
printOperand(os, getLhs()); printOperand(os, getLhs());
os << ", "; os << ", ";
@@ -834,7 +834,7 @@ void CondBrInst::print(std::ostream &os) const {
if (condName.empty()) { if (condName.empty()) {
// 使用条件值地址的哈希值作为唯一标识 // 使用条件值地址的哈希值作为唯一标识
auto ptr_hash = std::hash<const void*>{}(static_cast<const void*>(condition)); auto ptr_hash = std::hash<const void*>{}(static_cast<const void*>(condition));
condName = "const_" + std::to_string(ptr_hash % 100000); condName = "const_" + std::to_string(ptr_hash % 1000000007);
} }
// 组合指令地址、条件地址和目标块地址的哈希来确保唯一性 // 组合指令地址、条件地址和目标块地址的哈希来确保唯一性
@@ -843,7 +843,7 @@ void CondBrInst::print(std::ostream &os) const {
auto then_hash = std::hash<const void*>{}(static_cast<const void*>(getThenBlock())); auto then_hash = std::hash<const void*>{}(static_cast<const void*>(getThenBlock()));
auto else_hash = std::hash<const void*>{}(static_cast<const void*>(getElseBlock())); auto else_hash = std::hash<const void*>{}(static_cast<const void*>(getElseBlock()));
size_t combined_hash = inst_hash ^ (cond_hash << 1) ^ (then_hash << 2) ^ (else_hash << 3); size_t combined_hash = inst_hash ^ (cond_hash << 1) ^ (then_hash << 2) ^ (else_hash << 3);
std::string uniqueSuffix = std::to_string(combined_hash % 1000000); std::string uniqueSuffix = std::to_string(combined_hash % 1000000007);
os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 "; os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 ";
printOperand(os, condition); printOperand(os, condition);

View File

@@ -74,6 +74,7 @@ void DCEContext::run(Function *func, AnalysisManager *AM, bool &changed) {
} }
} }
} }
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func); // 如果有活跃指令,则标记为已更改
} }
// 判断指令是否是"天然活跃"的实现 // 判断指令是否是"天然活跃"的实现

View File

@@ -39,7 +39,7 @@ bool GVN::runOnFunction(Function *func, AnalysisManager &AM) {
} }
std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl; std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl;
} }
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
return changed; return changed;
} }

View File

@@ -671,13 +671,13 @@ bool GlobalStrengthReductionContext::reduceDivision(BinaryInst *inst) {
} }
// x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法) // x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法)
if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) { // if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
// auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal)); // // auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal)); // Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
replaceWithOptimized(inst, magicResult); // replaceWithOptimized(inst, magicResult);
divisionOptCount++; // divisionOptCount++;
return true; // return true;
} // }
return false; return false;
} }

View File

@@ -133,6 +133,7 @@ bool InductionVariableEliminationContext::run(Function* F, AnalysisManager& AM)
printDebugInfo(); printDebugInfo();
} }
modified |= SysYIROptUtils::eliminateRedundantPhisInFunction(F);
return modified; return modified;
} }

View File

@@ -661,9 +661,9 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
case StrengthReductionCandidate::DIVIDE_CONST: { case StrengthReductionCandidate::DIVIDE_CONST: {
// 任意常数除法 // 任意常数除法
builder->setPosition(candidate->containingBlock, // builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst)); // candidate->containingBlock->findInstIterator(candidate->originalInst));
replacementValue = generateConstantDivisionReplacement(candidate, builder); // replacementValue = generateConstantDivisionReplacement(candidate, builder);
break; break;
} }
@@ -683,17 +683,19 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
); );
// 检查原值是否为负数 // 检查原值是否为负数
Value* zero = ConstantInteger::get(0); Value* shift31condidata = builder->createBinaryInst(
Value* isNegative = builder->createICmpLTInst(candidate->inductionVar, zero); Instruction::Kind::kSra, candidate->inductionVar->getType(),
candidate->inductionVar, ConstantInteger::get(31)
);
// 如果为负数,需要调整结果 // 如果为负数,需要调整结果
Value* adjustment = ConstantInteger::get(candidate->multiplier); Value* adjustment = builder->createAndInst(shift31condidata, maskConstant);
Value* adjustedTemp = builder->createAddInst(temp, adjustment); Value* adjustedTemp = builder->createAddInst(candidate->inductionVar, adjustment);
Value* adjustedResult = builder->createBinaryInst(
// 使用条件分支来模拟select操作 Instruction::Kind::kAnd, candidate->inductionVar->getType(),
// 为简化起见,这里先用一个更复杂但可工作的方式 adjustedTemp, maskConstant
// 实际应该创建条件分支,但这里先简化处理 );
replacementValue = temp; // 简化版本,假设大多数情况下不是负数 replacementValue = adjustedResult;
} else { } else {
// 非负数的取模,直接使用位与 // 非负数的取模,直接使用位与
replacementValue = builder->createBinaryInst( replacementValue = builder->createBinaryInst(

View File

@@ -1357,9 +1357,8 @@ void SCCPContext::run(Function *func, AnalysisManager &AM) {
bool changed_control_flow = SimplifyControlFlow(func); bool changed_control_flow = SimplifyControlFlow(func);
// 如果任何一个阶段修改了 IR标记分析结果为失效 // 如果任何一个阶段修改了 IR标记分析结果为失效
if (changed_constant_propagation || changed_control_flow) { bool changed = changed_constant_propagation || changed_control_flow;
// AM.invalidate(); // 假设有这样的方法来使所有分析结果失效 changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
}
} }
// SCCP Pass methods // SCCP Pass methods

View File

@@ -181,19 +181,19 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
printPasses(); printPasses();
} }
// this->clearPasses(); this->clearPasses();
// this->addPass(&LoopStrengthReduction::ID); this->addPass(&LoopStrengthReduction::ID);
// this->run(); this->run();
if(DEBUG) { if(DEBUG) {
std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n"; std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n";
printPasses(); printPasses();
} }
// // 全局强度削弱优化,包括代数优化和魔数除法 // 全局强度削弱优化,包括代数优化和魔数除法
// this->clearPasses(); this->clearPasses();
// this->addPass(&GlobalStrengthReduction::ID); this->addPass(&GlobalStrengthReduction::ID);
// this->run(); this->run();
if(DEBUG) { if(DEBUG) {
std::cout << "=== IR After Global Strength Reduction Optimizations ===\n"; std::cout << "=== IR After Global Strength Reduction Optimizations ===\n";