Merge branch 'backend'

This commit is contained in:
Lixuanwang
2025-07-15 15:04:20 +08:00
4 changed files with 144 additions and 38 deletions

View File

@@ -6,8 +6,6 @@
#include <iomanip> #include <iomanip>
#include <functional> #include <functional>
#define DEBUG 0
#define DEEPDEBUG 0
namespace sysy { namespace sysy {
// 可用于分配的寄存器 // 可用于分配的寄存器
@@ -390,48 +388,118 @@ std::vector<std::unique_ptr<RISCv64CodeGen::DAGNode>> RISCv64CodeGen::build_dag(
// 但它本身不应该有 result_vreg因为不映射到物理寄存器。 // 但它本身不应该有 result_vreg因为不映射到物理寄存器。
create_node(DAGNode::ALLOCA_ADDR, alloca, value_to_node, nodes_storage); create_node(DAGNode::ALLOCA_ADDR, alloca, value_to_node, nodes_storage);
} else if (auto store = dynamic_cast<StoreInst*>(inst)) { } else if (auto store = dynamic_cast<StoreInst*>(inst)) {
auto store_node = create_node(DAGNode::STORE, store, value_to_node, nodes_storage); // 调用成员函数版 create_node auto store_node = create_node(DAGNode::STORE, store, value_to_node, nodes_storage);
// 获取要存储的值 // 获取要存储的值
DAGNode* val_node = get_operand_node(store->getValue(), value_to_node, nodes_storage); // 传递参数 DAGNode* val_node = get_operand_node(store->getValue(), value_to_node, nodes_storage);
// 获取内存位置的指针 (基地址) // 获取内存位置的指针 (基地址)
Value* ptr_ir = store->getPointer(); Value* ptr_ir = store->getPointer();
DAGNode* ptr_node = get_operand_node(ptr_ir, value_to_node, nodes_storage); // 传递参数 DAGNode* ptr_node = get_operand_node(ptr_ir, value_to_node, nodes_storage);
store_node->operands.push_back(val_node); store_node->operands.push_back(val_node);
store_node->operands.push_back(ptr_node);
val_node->users.push_back(store_node);
ptr_node->users.push_back(store_node);
if (store->getNumIndices()) // === 修改开始:处理带索引的 StoreInst ===
if (DEBUG) std::cerr << "处理 StoreInst 的 indices: " << store->getNumIndices() << "\n"; // 调试输出 if (store->getNumIndices() > 0) {
for (int i = 0; i < store->getNumIndices(); ++i) { if (DEBUG) std::cerr << "处理带索引的 StoreInst: " << store->getNumIndices() << " 个索引\n";
if (DEBUG) std::cerr << "处理 StoreInst 的 indices: " << i << "\n"; // 调试输出
Value* index_ir = store->getIndex(i); // 假设只有一个索引
DAGNode* index_node = get_operand_node(index_ir, value_to_node, nodes_storage); // 传递参数 Value* index_ir = store->getIndex(0); // 获取索引 IR Value*
store_node->operands.push_back(index_node); DAGNode* index_node = get_operand_node(index_ir, value_to_node, nodes_storage); // 索引 DAG 节点
index_node->users.push_back(store_node);
// 1. 获取元素大小的 ConstantValue * (例如 4 字节)
// ConstantValue::get 返回裸指针,其生命周期由 IR 框架自身管理(假定是单例或池化)。
Value* const_4_value_ir = ConstantValue::get(4);
// 为这个常量创建一个 DAGNode
DAGNode* size_node = create_node(DAGNode::CONSTANT, const_4_value_ir, value_to_node, nodes_storage);
// 2. 创建一个 BINARY (MUL) 节点来计算字节偏移量 (index * element_size)
// BinaryInst 构造函数是 protected 的,需要通过静态工厂方法创建
Instruction* dummy_mul_inst_raw_ptr = BinaryInst::create(BinaryInst::kMul, Type::getIntType(), index_ir, const_4_value_ir, bb);
// 将所有权转移到成员变量 temp_instructions_storage
temp_instructions_storage.push_back(std::unique_ptr<Instruction>(dummy_mul_inst_raw_ptr)); // 存储临时的 Instruction
// 为这个新的 BinaryInst 创建一个 DAGNode它的类型是 DAGNode::BINARY
DAGNode* byte_offset_node = create_node(DAGNode::BINARY, dummy_mul_inst_raw_ptr, value_to_node, nodes_storage);
byte_offset_node->operands.push_back(index_node);
byte_offset_node->operands.push_back(size_node);
index_node->users.push_back(byte_offset_node);
size_node->users.push_back(byte_offset_node);
// 3. 创建一个 BINARY (ADD) 节点来计算最终地址 (base_address + byte_offset)
// 创建另一个临时的 BinaryInst。
Instruction* dummy_add_inst_raw_ptr = BinaryInst::create(BinaryInst::kAdd, Type::getIntType(), ptr_ir, dummy_mul_inst_raw_ptr, bb);
temp_instructions_storage.push_back(std::unique_ptr<Instruction>(dummy_add_inst_raw_ptr)); // 存储临时的 Instruction
// 为这个新的 BinaryInst 创建一个 DAGNode
DAGNode* final_addr_node = create_node(DAGNode::BINARY, dummy_add_inst_raw_ptr, value_to_node, nodes_storage);
final_addr_node->operands.push_back(ptr_node);
final_addr_node->operands.push_back(byte_offset_node);
ptr_node->users.push_back(final_addr_node);
byte_offset_node->users.push_back(final_addr_node);
// 现在STORE 节点的操作数是要存储的值和最终地址
store_node->operands.push_back(final_addr_node);
final_addr_node->users.push_back(store_node);
} else { // 原始的非索引 StoreInst 处理
store_node->operands.push_back(ptr_node);
ptr_node->users.push_back(store_node);
} }
// === 修改结束 ===
} else if (auto load = dynamic_cast<LoadInst*>(inst)) { } else if (auto load = dynamic_cast<LoadInst*>(inst)) {
auto load_node = create_node(DAGNode::LOAD, load, value_to_node, nodes_storage); // 调用成员函数版 create_node auto load_node = create_node(DAGNode::LOAD, load, value_to_node, nodes_storage);
// 获取内存位置的指针 (基地址) // 获取内存位置的指针 (基地址)
Value* ptr_ir = load->getPointer(); Value* ptr_ir = load->getPointer();
DAGNode* ptr_node = get_operand_node(ptr_ir, value_to_node, nodes_storage); // 传递参数 DAGNode* ptr_node = get_operand_node(ptr_ir, value_to_node, nodes_storage);
load_node->operands.push_back(ptr_node); // === 修改开始:处理带索引的 LoadInst ===
ptr_node->users.push_back(load_node); if (load->getNumIndices() > 0) {
// 假设只有一个索引
Value* index_ir = load->getIndex(0);
DAGNode* index_node = get_operand_node(index_ir, value_to_node, nodes_storage);
for (int i = 0; i < load->getNumIndices(); ++i) { // 1. 获取元素大小的 ConstantValue * (例如 4 字节)
Value* index_ir = load->getIndex(i); Value* const_4_value_ir = ConstantValue::get(4);
DAGNode* index_node = get_operand_node(index_ir, value_to_node, nodes_storage); // 传递参数 DAGNode* size_node = create_node(DAGNode::CONSTANT, const_4_value_ir, value_to_node, nodes_storage);
load_node->operands.push_back(index_node);
index_node->users.push_back(load_node); // 2. 创建一个 BINARY (MUL) 节点来计算字节偏移量 (index * element_size)
Instruction* dummy_mul_inst_raw_ptr = BinaryInst::create(BinaryInst::kMul, Type::getIntType(), index_ir, const_4_value_ir, bb);
temp_instructions_storage.push_back(std::unique_ptr<Instruction>(dummy_mul_inst_raw_ptr)); // 存储临时的 Instruction
DAGNode* byte_offset_node = create_node(DAGNode::BINARY, dummy_mul_inst_raw_ptr, value_to_node, nodes_storage);
byte_offset_node->operands.push_back(index_node);
byte_offset_node->operands.push_back(size_node);
index_node->users.push_back(byte_offset_node);
size_node->users.push_back(byte_offset_node);
// 3. 创建一个 BINARY (ADD) 节点来计算最终地址 (base_address + byte_offset)
Instruction* dummy_add_inst_raw_ptr = BinaryInst::create(BinaryInst::kAdd, Type::getIntType(), ptr_ir, dummy_mul_inst_raw_ptr, bb);
temp_instructions_storage.push_back(std::unique_ptr<Instruction>(dummy_add_inst_raw_ptr)); // 存储临时的 Instruction
DAGNode* final_addr_node = create_node(DAGNode::BINARY, dummy_add_inst_raw_ptr, value_to_node, nodes_storage);
final_addr_node->operands.push_back(ptr_node);
final_addr_node->operands.push_back(byte_offset_node);
ptr_node->users.push_back(final_addr_node);
byte_offset_node->users.push_back(final_addr_node);
// 现在LOAD 节点的操作数是最终地址
load_node->operands.push_back(final_addr_node);
final_addr_node->users.push_back(load_node);
} else { // 原始的非索引 LoadInst 处理
load_node->operands.push_back(ptr_node);
ptr_node->users.push_back(load_node);
} }
// === 修改结束 ===
// 关联 load_node 的结果到 value_to_node
value_to_node[load] = load_node; // 这里的 value_to_node 是局部变量OK
} else if (auto bin = dynamic_cast<BinaryInst*>(inst)) { } else if (auto bin = dynamic_cast<BinaryInst*>(inst)) {
if (value_to_node.count(bin)) continue; // CSE if (value_to_node.count(bin)) continue; // CSE

View File

@@ -10,6 +10,9 @@
#include <iostream> #include <iostream>
#include <functional> // For std::function #include <functional> // For std::function
extern int DEBUG;
extern int DEEPDEBUG;
namespace sysy { namespace sysy {
class RISCv64CodeGen { class RISCv64CodeGen {
@@ -110,6 +113,8 @@ private:
std::map<Value*, DAGNode*>& value_to_node, std::map<Value*, DAGNode*>& value_to_node,
std::vector<std::unique_ptr<DAGNode>>& nodes_storage std::vector<std::unique_ptr<DAGNode>>& nodes_storage
); );
std::vector<std::unique_ptr<Instruction>> temp_instructions_storage; // 用于存储 build_dag 中创建的临时 BinaryInst
}; };
} // namespace sysy } // namespace sysy

View File

@@ -883,6 +883,10 @@ public:
assert(false); assert(false);
} }
} ///< 根据指令类型进行二元计算eval template模板实现 } ///< 根据指令类型进行二元计算eval template模板实现
static BinaryInst* create(Kind kind, Type *type, Value *lhs, Value *rhs, BasicBlock *parent, const std::string &name = "") {
// 后端处理数组访存操作时需要创建计算地址的指令,需要在外部构造 BinaryInst 对象所以写了个public的方法。
return new BinaryInst(kind, type, lhs, rhs, parent, name);
}
}; // class BinaryInst }; // class BinaryInst
//! The return statement //! The return statement

View File

@@ -18,6 +18,9 @@ using namespace antlr4;
// #include "LLVMIRGenerator.h" // #include "LLVMIRGenerator.h"
using namespace sysy; using namespace sysy;
int DEBUG = 0;
int DEEPDEBUG = 0;
static string argStopAfter; static string argStopAfter;
static string argInputFile; static string argInputFile;
static bool argFormat = false; static bool argFormat = false;
@@ -27,7 +30,7 @@ void usage(int code = EXIT_FAILURE) {
"Supported options:\n" "Supported options:\n"
" -h \tprint help message and exit\n"; " -h \tprint help message and exit\n";
" -f \tpretty-format the input file\n"; " -f \tpretty-format the input file\n";
" -s {ast,ir,asm,llvmir}\tstop after generating AST/IR/Assembly\n"; " -s {ast,ir,asm,llvmir,asmd,ird}\tstop after generating AST/IR/Assembly\n";
cerr << msg; cerr << msg;
exit(code); exit(code);
} }
@@ -80,10 +83,16 @@ int main(int argc, char **argv) {
// visit AST to generate IR // visit AST to generate IR
SysYIRGenerator generator; SysYIRGenerator generator;
generator.visitCompUnit(moduleAST); generator.visitCompUnit(moduleAST);
if (argStopAfter == "ir") { if (argStopAfter == "ir" || argStopAfter == "ird") {
if (argStopAfter == "ird") {
DEBUG = 1;
}
auto moduleIR = generator.get(); auto moduleIR = generator.get();
SysYPrinter printer(moduleIR); SysYPrinter printer(moduleIR);
printer.printIR(); if (DEBUG) {
cout << "=== Original IR ===\n";
printer.printIR();
}
auto builder = generator.getBuilder(); auto builder = generator.getBuilder();
SysYOptPre optPre(moduleIR, builder); SysYOptPre optPre(moduleIR, builder);
optPre.SysYOptimizateAfterIR(); optPre.SysYOptimizateAfterIR();
@@ -91,19 +100,35 @@ int main(int argc, char **argv) {
cfa.init(); cfa.init();
ActiveVarAnalysis ava; ActiveVarAnalysis ava;
ava.init(moduleIR); ava.init(moduleIR);
printer.printIR(); if (DEBUG) {
cout << "=== After CFA & AVA ===\n";
printer.printIR();
}
DeadCodeElimination dce(moduleIR, &cfa, &ava); DeadCodeElimination dce(moduleIR, &cfa, &ava);
dce.runDCEPipeline(); dce.runDCEPipeline();
if (DEBUG) {
cout << "=== After 1st DCE ===\n";
printer.printIR();
}
Mem2Reg mem2reg(moduleIR, builder, &cfa, &ava); Mem2Reg mem2reg(moduleIR, builder, &cfa, &ava);
mem2reg.mem2regPipeline(); mem2reg.mem2regPipeline();
printer.printIR(); if (DEBUG) {
cout << "=== After Mem2Reg ===\n";
printer.printIR();
}
Reg2Mem reg2mem(moduleIR, builder); Reg2Mem reg2mem(moduleIR, builder);
reg2mem.DeletePhiInst(); reg2mem.DeletePhiInst();
printer.printIR(); if (DEBUG) {
cout << "=== After Reg2Mem ===\n";
printer.printIR();
}
dce.runDCEPipeline(); dce.runDCEPipeline();
if (DEBUG) {
cout << "=== After 2nd DCE ===\n";
printer.printIR();
}
cout << "=== Final IR ===\n";
printer.printIR();
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }
@@ -111,7 +136,11 @@ int main(int argc, char **argv) {
auto module = generator.get(); auto module = generator.get();
sysy::RISCv64CodeGen codegen(module); sysy::RISCv64CodeGen codegen(module);
string asmCode = codegen.code_gen(); string asmCode = codegen.code_gen();
if (argStopAfter == "asm") { if (argStopAfter == "asm" || argStopAfter == "asmd") {
if (argStopAfter == "asmd") {
DEBUG = 1;
DEEPDEBUG = 1;
}
cout << asmCode << endl; cout << asmCode << endl;
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }