添加数据流分析类,实现前向后向分析的模板动作,实现活跃变量分析,基本借鉴学长代码,后续可优化实现

This commit is contained in:
rain2133
2025-06-24 23:45:43 +08:00
parent 3dbb394bc2
commit ac7644f450
2 changed files with 366 additions and 1 deletions

View File

@@ -254,6 +254,267 @@ void ControlFlowAnalysis::computeDomFrontierAllBlk() {
}
}
// ==========================
// dataflow analysis utils
// ==========================
// 先引用学长的代码
// TODO: Worklist 增加逆后序遍历机制
void DataFlowAnalysisUtils::forwardAnalyze(Module *pModule){
std::map<DataFlowAnalysis *, bool> workAnalysis;
for (auto &dataflow : forwardAnalysisList) {
dataflow->init(pModule);
}
for (const auto &function : pModule->getFunctions()) {
for (auto &dataflow : forwardAnalysisList) {
workAnalysis.emplace(dataflow, false);
}
while (!workAnalysis.empty()) {
for (const auto &block : function.second->getBasicBlocks()) {
for (auto &elem : workAnalysis) {
if (elem.first->analyze(pModule, block.get())) {
elem.second = true;
}
}
}
std::map<DataFlowAnalysis *, bool> tmp;
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
workAnalysis.swap(tmp);
for (auto &elem : workAnalysis) {
elem.second = false;
}
}
}
}
void DataFlowAnalysisUtils::backwardAnalyze(Module *pModule) {
std::map<DataFlowAnalysis *, bool> workAnalysis;
for (auto &dataflow : backwardAnalysisList) {
dataflow->init(pModule);
}
for (const auto &function : pModule->getFunctions()) {
for (auto &dataflow : backwardAnalysisList) {
workAnalysis.emplace(dataflow, false);
}
while (!workAnalysis.empty()) {
for (const auto &block : function.second->getBasicBlocks()) {
for (auto &elem : workAnalysis) {
if (elem.first->analyze(pModule, block.get())) {
elem.second = true;
}
}
}
std::map<DataFlowAnalysis *, bool> tmp;
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
workAnalysis.swap(tmp);
for (auto &elem : workAnalysis) {
elem.second = false;
}
}
}
}
std::set<User *> ActiveVarAnalysis::getUsedSet(Instruction *inst) {
using Kind = Instruction::Kind;
std::vector<User *> operands;
for (const auto &operand : inst->getOperands()) {
operands.emplace_back(dynamic_cast<User *>(operand->getValue()));
}
std::set<User *> result;
switch (inst->getKind()) {
// phi op
case Kind::kPhi:
case Kind::kCall:
result.insert(std::next(operands.begin()), operands.end());
break;
case Kind::kCondBr:
result.insert(operands[0]);
break;
case Kind::kBr:
case Kind::kAlloca:
break;
// mem op
case Kind::kStore:
// StoreInst 的第一个操作数是被存储的值,第二个操作数是存储的变量
// 后续的是可能的数组维度
result.insert(operands[0]);
result.insert(operands.begin() + 2, operands.end());
break;
case Kind::kLoad:
case Kind::kLa: {
auto variable = dynamic_cast<AllocaInst *>(operands[0]);
auto global = dynamic_cast<GlobalValue *>(operands[0]);
auto constArray = dynamic_cast<ConstantVariable *>(operands[0]);
if ((variable != nullptr && variable->getNumDims() == 0) || (global != nullptr && global->getNumDims() == 0) ||
(constArray != nullptr && constArray->getNumDims() == 0)) {
result.insert(operands[0]);
}
result.insert(std::next(operands.begin()), operands.end());
break;
}
case Kind::kGetSubArray: {
for (unsigned i = 2; i < operands.size(); i++) {
// 数组的维度信息
result.insert(operands[i]);
}
break;
}
case Kind::kMemset: {
result.insert(std::next(operands.begin()), operands.end());
break;
}
case Kind::kInvalid:
// Binary
case Kind::kAdd:
case Kind::kSub:
case Kind::kMul:
case Kind::kDiv:
case Kind::kRem:
case Kind::kICmpEQ:
case Kind::kICmpNE:
case Kind::kICmpLT:
case Kind::kICmpLE:
case Kind::kICmpGT:
case Kind::kICmpGE:
case Kind::kFAdd:
case Kind::kFSub:
case Kind::kFMul:
case Kind::kFDiv:
case Kind::kFCmpEQ:
case Kind::kFCmpNE:
case Kind::kFCmpLT:
case Kind::kFCmpLE:
case Kind::kFCmpGT:
case Kind::kFCmpGE:
case Kind::kAnd:
case Kind::kOr:
// Unary
case Kind::kNeg:
case Kind::kNot:
case Kind::kFNot:
case Kind::kFNeg:
case Kind::kFtoI:
case Kind::kItoF:
// terminator
case Kind::kReturn:
result.insert(operands.begin(), operands.end());
break;
default:
assert(false);
break;
}
result.erase(nullptr);
return result;
}
User * ActiveVarAnalysis::getDefine(Instruction *inst) {
User *result = nullptr;
if (inst->isStore()) {
StoreInst* store = dynamic_cast<StoreInst *>(inst);
auto operand = store->getPointer();
AllocaInst* variable = dynamic_cast<AllocaInst *>(operand);
GlobalValue* global = dynamic_cast<GlobalValue *>(operand);
if ((variable != nullptr && variable->getNumDims() != 0) || (global != nullptr && global->getNumDims() != 0)) {
// 如果是数组变量或者全局变量,则不返回定义
// TODO兼容数组变量
result = nullptr;
} else {
result = dynamic_cast<User *>(operand);
}
} else if (inst->isPhi()) {
result = dynamic_cast<User *>(inst->getOperand(0));
} else if (inst->isBinary() || inst->isUnary() || inst->isCall() ||
inst->isLoad() || inst->isLa()) {
result = dynamic_cast<User *>(inst);
}
return result;
}
void ActiveVarAnalysis::init(Module *pModule) {
for (const auto &function : pModule->getFunctions()) {
for (const auto &block : function.second->getBasicBlocks()) {
activeTable.emplace(block.get(), std::vector<std::set<User *>>{});
for (unsigned i = 0; i < block->getNumInstructions() + 1; i++)
activeTable.at(block.get()).emplace_back();
}
}
}
// 活跃变量分析公式 每个块内的分析动作供分析器调用
bool ActiveVarAnalysis::analyze(Module *pModule, BasicBlock *block) {
bool changed = false; // 标记数据流结果是否有变化
std::set<User *> activeSet{}; // 当前计算的活跃变量集合
// 步骤1: 计算基本块出口的活跃变量集 (OUT[B])
// 公式: OUT[B] = _{S ∈ succ(B)} IN[S]
for (const auto &succ : block->getSuccessors()) {
// 获取后继块入口的活跃变量集 (IN[S])
auto succActiveSet = activeTable.at(succ).front();
// 合并所有后继块的入口活跃变量
activeSet.insert(succActiveSet.begin(), succActiveSet.end());
}
// 步骤2: 处理基本块出口处的活跃变量集
const auto &instructions = block->getInstructions();
const auto numInstructions = instructions.size();
// 获取旧的出口活跃变量集 (block出口对应索引numInstructions)
const auto &oldEndActiveSet = activeTable.at(block)[numInstructions];
// 检查出口活跃变量集是否有变化
if (!std::equal(activeSet.begin(), activeSet.end(),
oldEndActiveSet.begin(), oldEndActiveSet.end()))
{
changed = true; // 标记变化
activeTable.at(block)[numInstructions] = activeSet; // 更新出口活跃变量集
}
// 步骤3: 逆序遍历基本块中的指令
// 从最后一条指令开始向前计算每个程序点的活跃变量
auto instructionIter = instructions.end();
instructionIter--; // 指向最后一条指令
// 从出口向入口遍历 (索引从numInstructions递减到1)
for (unsigned i = numInstructions; i > 0; i--) {
auto inst = instructionIter->get(); // 当前指令
auto used = getUsedSet(inst);
User *defined = getDefine(inst);
// 步骤3.3: 计算指令入口的活跃变量 (IN[i])
// 公式: IN[i] = use_i (OUT[i] - def_i)
activeSet.erase(defined); // 移除被定义的变量 (OUT[i] - def_i)
activeSet.insert(used.begin(), used.end()); // 添加使用的变量
// 获取旧的入口活跃变量集 (位置i-1对应当前指令的入口)
const auto &oldActiveSet = activeTable.at(block)[i - 1];
// 检查活跃变量集是否有变化
if (!std::equal(activeSet.begin(), activeSet.end(),
oldActiveSet.begin(), oldActiveSet.end()))
{
changed = true; // 标记变化
activeTable.at(block)[i - 1] = activeSet; // 更新入口活跃变量集
}
instructionIter--; // 移动到前一条指令
}
return changed; // 返回数据流结果是否变化
}
auto ActiveVarAnalysis::getActiveTable() const -> const std::map<BasicBlock *, std::vector<std::set<User *>>> & {
return activeTable;
}
} // namespace sysy