[midend-LoopAnalysis]移除基本循环特征分析中的向量化并行化内容,增加循环向量化并行化特征分析遍,TODO:构建循环优化遍验证分析遍正确性

This commit is contained in:
rain2133
2025-08-09 13:53:00 +08:00
parent bd23f6154d
commit ac3358d7e3
7 changed files with 1473 additions and 303 deletions

View File

@@ -0,0 +1,250 @@
#pragma once
#include "Pass.h"
#include "Loop.h"
#include "LoopCharacteristics.h"
#include "AliasAnalysis.h"
#include "SideEffectAnalysis.h"
#include <vector>
#include <map>
#include <memory>
#include <set>
#include <string>
namespace sysy {
/**
* @brief 依赖类型枚举 - 只考虑真正影响并行性的依赖
*
* 依赖类型分析说明:
* - TRUE_DEPENDENCE (RAW): 真依赖,必须保持原始执行顺序,是最关键的依赖
* - ANTI_DEPENDENCE (WAR): 反依赖,影响指令重排序,可通过寄存器重命名等技术缓解
* - OUTPUT_DEPENDENCE (WAW): 输出依赖,相对较少但需要考虑,可通过变量私有化解决
*
*/
enum class DependenceType {
TRUE_DEPENDENCE, // 真依赖 (RAW) - 读后写流依赖,最重要的依赖类型
ANTI_DEPENDENCE, // 反依赖 (WAR) - 写后读反向依赖,影响指令重排序
OUTPUT_DEPENDENCE // 输出依赖 (WAW) - 写后写,相对较少但需要考虑
};
/**
* @brief 依赖向量 - 表示两个内存访问之间的迭代距离
* 例如a[i] 和 a[i+1] 之间的依赖向量是 [1]
* a[i][j] 和 a[i+1][j-2] 之间的依赖向量是 [1,-2]
*/
struct DependenceVector {
std::vector<int> distances; // 每个循环层次的依赖距离
bool isConstant; // 是否为常量距离
bool isKnown; // 是否已知距离
DependenceVector(size_t loopDepth) : distances(loopDepth, 0), isConstant(false), isKnown(false) {}
// 检查是否为循环无关依赖
bool isLoopIndependent() const {
for (int dist : distances) {
if (dist != 0) return false;
}
return true;
}
// 获取词典序方向向量
std::vector<int> getDirectionVector() const;
// 检查是否可以通过向量化处理
bool isVectorizationSafe() const;
};
/**
* @brief 精确依赖关系 - 包含依赖向量的详细依赖信息
*/
struct PreciseDependence {
Instruction* source;
Instruction* sink;
DependenceType type;
DependenceVector dependenceVector;
Value* memoryLocation;
// 并行化相关
bool allowsParallelization; // 是否允许并行化
bool requiresSynchronization; // 是否需要同步
bool isReductionDependence; // 是否为归约依赖
PreciseDependence(size_t loopDepth) : dependenceVector(loopDepth),
allowsParallelization(true), requiresSynchronization(false), isReductionDependence(false) {}
};
/**
* @brief 向量化分析信息 - 暂时搁置,保留接口
*/
struct VectorizationAnalysis {
bool isVectorizable; // 固定为false暂不支持
int suggestedVectorWidth; // 固定为1
std::vector<std::string> preventingFactors; // 阻止向量化的因素
VectorizationAnalysis() : isVectorizable(false), suggestedVectorWidth(1) {
preventingFactors.push_back("Vectorization temporarily disabled");
}
};
/**
* @brief 并行化分析信息
*/
struct ParallelizationAnalysis {
bool isParallelizable; // 是否可并行化
int suggestedThreadCount; // 建议的线程数
std::vector<std::string> preventingFactors; // 阻止并行化的因素
// 并行化模式
enum ParallelizationType {
NONE, // 不可并行化
EMBARRASSINGLY_PARALLEL, // 完全并行
REDUCTION_PARALLEL, // 归约并行
PIPELINE_PARALLEL, // 流水线并行
CONDITIONAL_PARALLEL // 条件并行
} parallelType;
// 负载均衡
bool hasLoadBalance; // 是否有良好的负载均衡
bool isDynamicLoadBalanced; // 是否需要动态负载均衡
double workComplexity; // 工作复杂度估计
// 同步需求
bool requiresReduction; // 是否需要归约操作
bool requiresBarrier; // 是否需要屏障同步
std::set<Value*> sharedVariables; // 共享变量
std::set<Value*> reductionVariables; // 归约变量
std::set<Value*> privatizableVariables; // 可私有化变量
// 内存访问模式
bool hasMemoryConflicts; // 是否有内存冲突
bool hasReadOnlyAccess; // 是否只有只读访问
bool hasIndependentAccess; // 是否有独立的内存访问
// 并行化收益评估
double parallelizationBenefit; // 并行化收益估计 (0-1)
size_t communicationCost; // 通信开销估计
size_t synchronizationCost; // 同步开销估计
ParallelizationAnalysis() : isParallelizable(false), suggestedThreadCount(1), parallelType(NONE),
hasLoadBalance(true), isDynamicLoadBalanced(false), workComplexity(0.0), requiresReduction(false),
requiresBarrier(false), hasMemoryConflicts(false), hasReadOnlyAccess(false), hasIndependentAccess(false),
parallelizationBenefit(0.0), communicationCost(0), synchronizationCost(0) {}
};
/**
* @brief 循环向量化/并行化分析结果
*/
class LoopVectorizationResult : public AnalysisResultBase {
private:
Function* AssociatedFunction;
std::map<Loop*, VectorizationAnalysis> VectorizationMap;
std::map<Loop*, ParallelizationAnalysis> ParallelizationMap;
std::map<Loop*, std::vector<PreciseDependence>> DependenceMap;
public:
LoopVectorizationResult(Function* F) : AssociatedFunction(F) {}
~LoopVectorizationResult() override = default;
// 基础接口
void addVectorizationAnalysis(Loop* loop, VectorizationAnalysis analysis) {
VectorizationMap[loop] = std::move(analysis);
}
void addParallelizationAnalysis(Loop* loop, ParallelizationAnalysis analysis) {
ParallelizationMap[loop] = std::move(analysis);
}
void addDependenceAnalysis(Loop* loop, std::vector<PreciseDependence> dependences) {
DependenceMap[loop] = std::move(dependences);
}
// 查询接口
const VectorizationAnalysis* getVectorizationAnalysis(Loop* loop) const {
auto it = VectorizationMap.find(loop);
return it != VectorizationMap.end() ? &it->second : nullptr;
}
const ParallelizationAnalysis* getParallelizationAnalysis(Loop* loop) const {
auto it = ParallelizationMap.find(loop);
return it != ParallelizationMap.end() ? &it->second : nullptr;
}
const std::vector<PreciseDependence>* getPreciseDependences(Loop* loop) const {
auto it = DependenceMap.find(loop);
return it != DependenceMap.end() ? &it->second : nullptr;
}
// 统计接口
size_t getVectorizableLoopCount() const;
size_t getParallelizableLoopCount() const;
// 优化建议
std::vector<Loop*> getVectorizationCandidates() const;
std::vector<Loop*> getParallelizationCandidates() const;
// 打印分析结果
void print() const;
};
/**
* @brief 循环向量化/并行化分析遍
* 在循环规范化后执行,进行精确的依赖向量分析和向量化/并行化可行性评估
* 专注于并行化分析,向量化功能暂时搁置
*/
class LoopVectorizationPass : public AnalysisPass {
public:
// 唯一的 Pass ID
static void *ID;
LoopVectorizationPass() : AnalysisPass("LoopVectorization", Pass::Granularity::Function) {}
// 实现 getPassID
void *getPassID() const override { return &ID; }
// 核心运行方法
bool runOnFunction(Function *F, AnalysisManager &AM) override;
// 获取分析结果
std::unique_ptr<AnalysisResultBase> getResult() override { return std::move(CurrentResult); }
private:
std::unique_ptr<LoopVectorizationResult> CurrentResult;
// ========== 主要分析方法 ==========
void analyzeLoop(Loop* loop, LoopCharacteristics* characteristics,
AliasAnalysisResult* aliasAnalysis, SideEffectAnalysisResult* sideEffectAnalysis);
// ========== 依赖向量分析 ==========
std::vector<PreciseDependence> computeDependenceVectors(Loop* loop, AliasAnalysisResult* aliasAnalysis);
DependenceVector computeAccessDependence(Instruction* inst1, Instruction* inst2, Loop* loop);
bool areAccessesAffinelyRelated(Value* ptr1, Value* ptr2, Loop* loop);
// ========== 向量化分析 (暂时搁置) ==========
VectorizationAnalysis analyzeVectorizability(Loop* loop, const std::vector<PreciseDependence>& dependences,
LoopCharacteristics* characteristics);
// ========== 并行化分析 ==========
ParallelizationAnalysis analyzeParallelizability(Loop* loop, const std::vector<PreciseDependence>& dependences,
LoopCharacteristics* characteristics);
bool checkParallelizationLegality(Loop* loop, const std::vector<PreciseDependence>& dependences);
int estimateOptimalThreadCount(Loop* loop, LoopCharacteristics* characteristics);
ParallelizationAnalysis::ParallelizationType determineParallelizationType(Loop* loop,
const std::vector<PreciseDependence>& dependences);
// ========== 并行化专用分析方法 ==========
void analyzeReductionPatterns(Loop* loop, ParallelizationAnalysis* analysis);
void analyzeMemoryAccessPatterns(Loop* loop, ParallelizationAnalysis* analysis, AliasAnalysisResult* aliasAnalysis);
void estimateParallelizationBenefit(Loop* loop, ParallelizationAnalysis* analysis, LoopCharacteristics* characteristics);
void identifyPrivatizableVariables(Loop* loop, ParallelizationAnalysis* analysis);
void analyzeSynchronizationNeeds(Loop* loop, ParallelizationAnalysis* analysis, const std::vector<PreciseDependence>& dependences);
// ========== 辅助方法 ==========
std::vector<int> extractInductionCoefficients(Value* ptr, Loop* loop);
bool isConstantStride(Value* ptr, Loop* loop, int& stride);
bool isIndependentMemoryAccess(Value* ptr1, Value* ptr2, Loop* loop);
double estimateWorkComplexity(Loop* loop);
bool hasReductionPattern(Value* var, Loop* loop);
};
} // namespace sysy