Merge branch 'backend-O1-1' into backend

This commit is contained in:
Lixuanwang
2025-08-20 02:52:21 +08:00
24 changed files with 530 additions and 327 deletions

View File

@@ -103,6 +103,81 @@ void RISCv64ISel::select() {
}
}
// 仅当函数满足特定条件时,才需要保存参数寄存器,应用更精细的过滤规则
// 1. 函数包含call指令 (非叶子函数): 参数寄存器(a0-a7)是调用者保存的,
// call指令可能会覆盖这些寄存器因此必须保存。
// 2. 函数包含alloca指令 (需要栈分配)。
// 3. 函数的指令数量超过一个阈值如20意味着它是一个复杂的叶子函数
// 为安全起见,保存其参数。
// 简单的叶子函数 (如min) 则可以跳过这个步骤进行优化。
auto shouldSaveArgs = [](Function* func) {
if (!func) return false;
int instruction_count = 0;
for (const auto& bb : func->getBasicBlocks()) {
for (const auto& inst : bb->getInstructions()) {
if (dynamic_cast<CallInst*>(inst.get()) || dynamic_cast<AllocaInst*>(inst.get())) {
return true; // 发现call或alloca立即返回true
}
instruction_count++;
}
}
// 如果没有call或alloca则检查指令数量
return instruction_count > 45;
};
if (optLevel > 0 && shouldSaveArgs(F)) {
if (F && !F->getBasicBlocks().empty()) {
// 定位到第一个MachineBasicBlock也就是函数入口
BasicBlock* first_ir_block = F->getBasicBlocks_NoRange().front().get();
CurMBB = bb_map.at(first_ir_block);
int int_arg_idx = 0;
int fp_arg_idx = 0;
for (Argument* arg : F->getArguments()) {
Type* arg_type = arg->getType();
// --- 处理整数/指针参数 ---
if (!arg_type->isFloat() && int_arg_idx < 8) {
// 1. 获取参数原始的、将被预着色为 a0-a7 的 vreg
unsigned original_vreg = getVReg(arg);
// 2. 创建一个新的、安全的 vreg 来持有参数的值
unsigned saved_vreg = getNewVReg(arg_type);
// 3. 生成 mv saved_vreg, original_vreg 指令
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
mv->addOperand(std::make_unique<RegOperand>(saved_vreg));
mv->addOperand(std::make_unique<RegOperand>(original_vreg));
CurMBB->addInstruction(std::move(mv));
MFunc->addProtectedArgumentVReg(saved_vreg);
// 4.【关键】更新vreg映射表将arg的vreg指向新的、安全的vreg
// 这样,后续所有对该参数的 getVReg(arg) 调用都会自动获得 saved_vreg
// 使得函数体内的代码都使用这个被保存过的值。
vreg_map[arg] = saved_vreg;
int_arg_idx++;
}
// --- 处理浮点参数 ---
else if (arg_type->isFloat() && fp_arg_idx < 8) {
unsigned original_vreg = getVReg(arg);
unsigned saved_vreg = getNewVReg(arg_type);
// 对于浮点数,使用 fmv.s 指令
auto fmv = std::make_unique<MachineInstr>(RVOpcodes::FMV_S);
fmv->addOperand(std::make_unique<RegOperand>(saved_vreg));
fmv->addOperand(std::make_unique<RegOperand>(original_vreg));
CurMBB->addInstruction(std::move(fmv));
MFunc->addProtectedArgumentVReg(saved_vreg);
vreg_map[arg] = saved_vreg;
fp_arg_idx++;
}
// 对于栈传递的参数,则无需处理
}
}
}
// 遍历基本块,进行指令选择
for (const auto& bb_ptr : F->getBasicBlocks()) {
selectBasicBlock(bb_ptr.get());
@@ -501,6 +576,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(instr));
break;
}
case BinaryInst::kMulh: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
case Instruction::kDiv: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::DIVW);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
@@ -612,6 +695,22 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(xori));
break;
}
case BinaryInst::kAnd: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::AND);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
case BinaryInst::kOr: {
auto instr = std::make_unique<MachineInstr>(RVOpcodes::OR);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
CurMBB->addInstruction(std::move(instr));
break;
}
default:
throw std::runtime_error("Unsupported binary instruction in ISel");
}
@@ -1257,6 +1356,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
auto gep = dynamic_cast<GetElementPtrInst*>(node->value);
auto result_vreg = getVReg(gep);
if (optLevel == 0) {
// --- Step 1: 获取基地址 (此部分逻辑正确,保持不变) ---
auto base_ptr_node = node->operands[0];
auto current_addr_vreg = getNewVReg(gep->getType());
@@ -1363,6 +1463,106 @@ void RISCv64ISel::selectNode(DAGNode* node) {
final_mv->addOperand(std::make_unique<RegOperand>(current_addr_vreg));
CurMBB->addInstruction(std::move(final_mv));
break;
} else {
// 对于-O1时的处理逻辑
// --- Step 1: 获取基地址 ---
auto base_ptr_node = node->operands[0];
auto base_ptr_val = base_ptr_node->value;
// last_step_addr_vreg 保存上一步计算的结果。
// 它首先被初始化为GEP的初始基地址。
unsigned last_step_addr_vreg;
if (auto alloca_base = dynamic_cast<AllocaInst*>(base_ptr_val)) {
last_step_addr_vreg = getNewVReg(gep->getType());
auto frame_addr_instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
frame_addr_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
frame_addr_instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca_base)));
CurMBB->addInstruction(std::move(frame_addr_instr));
} else if (auto global_base = dynamic_cast<GlobalValue*>(base_ptr_val)) {
last_step_addr_vreg = getNewVReg(gep->getType());
auto la_instr = std::make_unique<MachineInstr>(RVOpcodes::LA);
la_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
la_instr->addOperand(std::make_unique<LabelOperand>(global_base->getName()));
CurMBB->addInstruction(std::move(la_instr));
} else {
// 对于函数参数或来自其他指令的指针直接获取其vreg。
// 这个vreg必须被保护不能在计算中被修改。
last_step_addr_vreg = getVReg(base_ptr_val);
}
// --- Step 2: 遵循LLVM GEP语义迭代计算地址 ---
Type* current_type = gep->getBasePointer()->getType()->as<PointerType>()->getBaseType();
for (size_t i = 0; i < gep->getNumIndices(); ++i) {
Value* indexValue = gep->getIndex(i);
unsigned stride = getTypeSizeInBytes(current_type);
if (stride != 0) {
// --- 为当前索引和步长生成偏移计算指令 ---
auto offset_vreg = getNewVReg(Type::getIntType());
unsigned index_vreg;
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
index_vreg = getNewVReg(Type::getIntType());
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
li->addOperand(std::make_unique<RegOperand>(index_vreg));
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
CurMBB->addInstruction(std::move(li));
} else {
index_vreg = getVReg(indexValue);
}
if (stride == 1) {
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
mv->addOperand(std::make_unique<RegOperand>(offset_vreg));
mv->addOperand(std::make_unique<RegOperand>(index_vreg));
CurMBB->addInstruction(std::move(mv));
} else {
auto size_vreg = getNewVReg(Type::getIntType());
auto li_size = std::make_unique<MachineInstr>(RVOpcodes::LI);
li_size->addOperand(std::make_unique<RegOperand>(size_vreg));
li_size->addOperand(std::make_unique<ImmOperand>(stride));
CurMBB->addInstruction(std::move(li_size));
auto mul = std::make_unique<MachineInstr>(RVOpcodes::MULW);
mul->addOperand(std::make_unique<RegOperand>(offset_vreg));
mul->addOperand(std::make_unique<RegOperand>(index_vreg));
mul->addOperand(std::make_unique<RegOperand>(size_vreg));
CurMBB->addInstruction(std::move(mul));
}
// --- 关键修复点 ---
// 创建一个新的vreg来保存本次加法的结果。
unsigned current_step_addr_vreg = getNewVReg(gep->getType());
// 执行 add current_step, last_step, offset
// 这确保了 last_step_addr_vreg (输入) 永远不会被直接修改。
auto add = std::make_unique<MachineInstr>(RVOpcodes::ADD);
add->addOperand(std::make_unique<RegOperand>(current_step_addr_vreg));
add->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
add->addOperand(std::make_unique<RegOperand>(offset_vreg));
CurMBB->addInstruction(std::move(add));
// 本次的结果成为下一次计算的输入。
last_step_addr_vreg = current_step_addr_vreg;
}
// --- 为下一次迭代更新类型 ---
if (auto array_type = current_type->as<ArrayType>()) {
current_type = array_type->getElementType();
} else if (auto ptr_type = current_type->as<PointerType>()) {
current_type = ptr_type->getBaseType();
}
}
// --- Step 3: 将最终计算出的地址存入GEP的目标虚拟寄存器 ---
auto final_mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
final_mv->addOperand(std::make_unique<RegOperand>(result_vreg));
final_mv->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
CurMBB->addInstruction(std::move(final_mv));
break;
}
}
default:

View File

@@ -98,6 +98,7 @@ bool RISCv64RegAlloc::doAllocation() {
precolorByCallingConvention();
analyzeLiveness();
build();
protectCrossCallVRegs();
makeWorklist();
while (!simplifyWorklist.empty() || !worklistMoves.empty() || !freezeWorklist.empty() || !spillWorklist.empty()) {
@@ -127,20 +128,46 @@ void RISCv64RegAlloc::precolorByCallingConvention() {
int int_arg_idx = 0;
int float_arg_idx = 0;
for (Argument* arg : F->getArguments()) {
unsigned vreg = ISel->getVReg(arg);
if (arg->getType()->isFloat()) {
if (float_arg_idx < 8) { // fa0-fa7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + float_arg_idx);
color_map[vreg] = preg;
float_arg_idx++;
if (optLevel > 0)
{
for (const auto& pair : vreg_to_value_map) {
unsigned vreg = pair.first;
Value* val = pair.second;
// 检查这个 Value* 是不是一个 Argument 对象
if (auto arg = dynamic_cast<Argument*>(val)) {
// 如果是,那么 vreg 就是最初分配给这个参数的 vreg
int arg_idx = arg->getIndex();
if (arg->getType()->isFloat()) {
if (arg_idx < 8) { // fa0-fa7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + arg_idx);
color_map[vreg] = preg;
}
} else { // 整数或指针
if (arg_idx < 8) { // a0-a7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + arg_idx);
color_map[vreg] = preg;
}
}
}
} else { // 整数或指针
if (int_arg_idx < 8) { // a0-a7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + int_arg_idx);
color_map[vreg] = preg;
int_arg_idx++;
}
} else {
for (Argument* arg : F->getArguments()) {
unsigned vreg = ISel->getVReg(arg);
if (arg->getType()->isFloat()) {
if (float_arg_idx < 8) { // fa0-fa7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + float_arg_idx);
color_map[vreg] = preg;
float_arg_idx++;
}
} else { // 整数或指针
if (int_arg_idx < 8) { // a0-a7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + int_arg_idx);
color_map[vreg] = preg;
int_arg_idx++;
}
}
}
}
@@ -159,6 +186,57 @@ void RISCv64RegAlloc::precolorByCallingConvention() {
}
}
void RISCv64RegAlloc::protectCrossCallVRegs() {
// 从ISel获取被标记为需要保护的参数副本vreg集合
const auto& vregs_to_protect_potentially = MFunc->getProtectedArgumentVRegs();
if (vregs_to_protect_potentially.empty()) {
return; // 如果没有需要保护的vreg直接返回
}
// VRegSet live_across_call_vregs;
// // 遍历所有指令找出哪些被标记的vreg其生命周期确实跨越了call指令
// for (const auto& mbb_ptr : MFunc->getBlocks()) {
// for (const auto& instr_ptr : mbb_ptr->getInstructions()) {
// if (instr_ptr->getOpcode() == RVOpcodes::CALL) {
// const VRegSet& live_out_after_call = live_out_map.at(instr_ptr.get());
// for (unsigned vreg : vregs_to_protect_potentially) {
// if (live_out_after_call.count(vreg)) {
// live_across_call_vregs.insert(vreg);
// }
// }
// }
// }
// }
// if (live_across_call_vregs.empty()) {
// return; // 如果被标记的vreg没有一个跨越call也无需操作
// }
// if (DEEPDEBUG) {
// std::cerr << "--- [FIX] Applying protection for argument vregs that live across calls: ";
// for(unsigned v : live_across_call_vregs) std::cerr << regIdToString(v) << " ";
// std::cerr << "\n";
// }
// 获取所有调用者保存寄存器
const auto& caller_saved_int = getCallerSavedIntRegs();
const auto& caller_saved_fp = getCallerSavedFpRegs();
const unsigned offset = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID);
// 为每个确认跨越call的vreg添加与所有调用者保存寄存器的冲突
for (unsigned vreg : vregs_to_protect_potentially) {
if (isFPVReg(vreg)) { // 如果是浮点vreg
for (auto preg : caller_saved_fp) {
addEdge(vreg, offset + static_cast<unsigned>(preg));
}
} else { // 如果是整数vreg
for (auto preg : caller_saved_int) {
addEdge(vreg, offset + static_cast<unsigned>(preg));
}
}
}
}
// 初始化/重置所有数据结构
void RISCv64RegAlloc::initialize() {
initial.clear();
@@ -477,16 +555,26 @@ void RISCv64RegAlloc::coalesce() {
unsigned x = getAlias(*def.begin());
unsigned y = getAlias(*use.begin());
unsigned u, v;
if (precolored.count(y)) { u = y; v = x; } else { u = x; v = y; }
// 总是将待合并的虚拟寄存器赋给 v将合并目标赋给 u。
// 优先级: 物理寄存器 (precolored) > 已着色的虚拟寄存器 (coloredNodes) > 普通虚拟寄存器。
if (precolored.count(y)) {
u = y;
v = x;
} else if (precolored.count(x)) {
u = x;
v = y;
} else if (coloredNodes.count(y)) {
u = y;
v = x;
} else {
u = x;
v = y;
}
// 防御性检查,处理物理寄存器之间的传送指令
if (precolored.count(u) && precolored.count(v)) {
// 如果 u 和 v 都是物理寄存器,我们不能合并它们。
// 这通常是一条寄存器拷贝指令,例如 `mv a2, a1`。
// 把它加入 constrainedMoves 列表,然后直接返回,不再处理。
constrainedMoves.insert(move);
// addWorklist(u) 和 addWorklist(v) 在这里也不需要调用,
// 因为它们只对虚拟寄存器有意义。
return;
}
@@ -498,9 +586,77 @@ void RISCv64RegAlloc::coalesce() {
if (DEEPERDEBUG) std::cerr << " -> Trivial coalesce (u == v).\n";
coalescedMoves.insert(move);
addWorklist(u);
return; // 处理完毕,提前返回
return;
}
bool is_conflicting = false;
// 检查1u 和 v 在冲突图中是否直接相连
if ((adjList.count(v) && adjList.at(v).count(u)) || (adjList.count(u) && adjList.at(u).count(v))) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Nodes interfere directly.\n";
is_conflicting = true;
}
// 检查2如果节点不直接相连则检查是否存在间接的颜色冲突
else {
// 获取 u 和 v 的颜色(如果它们有的话)
unsigned u_color_id = 0, v_color_id = 0;
if (precolored.count(u)) {
u_color_id = u;
} else if (coloredNodes.count(u) || color_map.count(u)) { // color_map.count(u) 是更可靠的检查
u_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(u));
}
if (precolored.count(v)) {
v_color_id = v;
} else if (coloredNodes.count(v) || color_map.count(v)) {
v_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(v));
}
// 如果 u 有颜色,检查 v 是否与该颜色代表的物理寄存器冲突
if (u_color_id != 0 && adjList.count(v) && adjList.at(v).count(u_color_id)) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(v) << " interferes with the color of " << regIdToString(u) << " (" << regIdToString(u_color_id) << ").\n";
is_conflicting = true;
}
// 如果 v 有颜色,检查 u 是否与该颜色代表的物理寄存器冲突
else if (v_color_id != 0 && adjList.count(u) && adjList.at(u).count(v_color_id)) {
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(u) << " interferes with the color of " << regIdToString(v) << " (" << regIdToString(v_color_id) << ").\n";
is_conflicting = true;
}
}
if (is_conflicting) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes interfere directly or via pre-coloring).\n";
constrainedMoves.insert(move);
addWorklist(u);
addWorklist(v);
return;
}
bool u_is_colored = precolored.count(u) || coloredNodes.count(u);
bool v_is_colored = precolored.count(v) || coloredNodes.count(v);
if (u_is_colored && v_is_colored) {
PhysicalReg u_color = precolored.count(u)
? static_cast<PhysicalReg>(u - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
: color_map.at(u);
PhysicalReg v_color = precolored.count(v)
? static_cast<PhysicalReg>(v - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
: color_map.at(v);
if (u_color != v_color) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (move between two different precolored nodes: "
<< regToString(u_color) << " and " << regToString(v_color) << ").\n";
constrainedMoves.insert(move);
return;
} else {
if (DEEPERDEBUG) std::cerr << " -> Trivial coalesce (move between same precolored nodes).\n";
coalescedMoves.insert(move);
combine(u, v);
addWorklist(u);
return;
}
}
// 类型检查
if (isFPVReg(u) != isFPVReg(v)) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (type mismatch: " << regIdToString(u) << " is "
<< (isFPVReg(u) ? "float" : "int") << ", " << regIdToString(v) << " is "
@@ -508,76 +664,52 @@ void RISCv64RegAlloc::coalesce() {
constrainedMoves.insert(move);
addWorklist(u);
addWorklist(v);
return; // 立即返回,不再进行后续检查
}
bool pre_interfere = adjList.at(v).count(u);
if (pre_interfere) {
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes already interfere).\n";
constrainedMoves.insert(move);
addWorklist(u);
addWorklist(v);
return;
}
bool is_u_precolored = precolored.count(u);
// 启发式判断逻辑
bool u_is_effectively_precolored = precolored.count(u) || coloredNodes.count(u);
bool can_coalesce = false;
if (is_u_precolored) {
// --- 场景1u是物理寄存器使用 George 启发式 ---
if (DEEPERDEBUG) std::cerr << " -> Trying George Heuristic (u is precolored)...\n";
if (u_is_effectively_precolored) {
if (DEEPERDEBUG) std::cerr << " -> Trying George Heuristic (u is effectively precolored)...\n";
// 步骤 1: 独立调用 adjacent(v) 获取邻居集合
VRegSet neighbors_of_v = adjacent(v);
if (DEEPERDEBUG) {
std::cerr << " - Neighbors of " << regIdToString(v) << " to check are (" << neighbors_of_v.size() << "): { ";
for (unsigned id : neighbors_of_v) std::cerr << regIdToString(id) << " ";
std::cerr << "}\n";
}
// 步骤 2: 使用显式的 for 循环来代替 std::all_of
bool george_ok = true; // 默认假设成功,任何一个邻居失败都会将此设为 false
bool george_ok = true;
for (unsigned t : neighbors_of_v) {
if (DEEPERDEBUG) {
std::cerr << " - Checking neighbor " << regIdToString(t) << ":\n";
}
if (DEEPERDEBUG) std::cerr << " - Checking neighbor " << regIdToString(t) << ":\n";
// 步骤 3: 独立调用启发式函数
bool heuristic_result = georgeHeuristic(t, u);
unsigned u_phys_id = precolored.count(u) ? u : (static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(u)));
bool heuristic_result = georgeHeuristic(t, u_phys_id);
if (DEEPERDEBUG) {
std::cerr << " - georgeHeuristic(" << regIdToString(t) << ", " << regIdToString(u) << ") -> " << (heuristic_result ? "OK" : "FAIL") << "\n";
std::cerr << " - georgeHeuristic(" << regIdToString(t) << ", " << regIdToString(u_phys_id) << ") -> " << (heuristic_result ? "OK" : "FAIL") << "\n";
}
if (!heuristic_result) {
george_ok = false; // 只要有一个邻居不满足条件,整个检查就失败
break; // 并且可以立即停止检查其他邻居
george_ok = false;
break;
}
}
if (DEEPERDEBUG) {
std::cerr << " -> George Heuristic final result: " << (george_ok ? "OK" : "FAIL") << "\n";
}
if (george_ok) {
can_coalesce = true;
}
if (DEEPERDEBUG) std::cerr << " -> George Heuristic final result: " << (george_ok ? "OK" : "FAIL") << "\n";
if (george_ok) can_coalesce = true;
} else {
// --- 场景2u和v都是虚拟寄存器使用 Briggs 启发式 ---
// --- 场景2u和v都是未着色的虚拟寄存器,使用 Briggs 启发式 ---
if (DEEPERDEBUG) std::cerr << " -> Trying Briggs Heuristic (u and v are virtual)...\n";
bool briggs_ok = briggsHeuristic(u, v);
if (DEEPERDEBUG) std::cerr << " - briggsHeuristic(" << regIdToString(u) << ", " << regIdToString(v) << ") -> " << (briggs_ok ? "OK" : "FAIL") << "\n";
if (briggs_ok) {
can_coalesce = true;
}
if (briggs_ok) can_coalesce = true;
}
// --- 根据启发式结果进行最终决策 ---
if (can_coalesce) {
if (DEEPERDEBUG) std::cerr << " -> Heuristic OK. Combining " << regIdToString(v) << " into " << regIdToString(u) << ".\n";
coalescedMoves.insert(move);
@@ -1133,7 +1265,7 @@ unsigned RISCv64RegAlloc::getAlias(unsigned n) {
}
void RISCv64RegAlloc::addWorklist(unsigned u) {
if (precolored.count(u)) return;
if (precolored.count(u) || color_map.count(u)) return;
int K = isFPVReg(u) ? K_fp : K_int;
if (!moveRelated(u) && degree.at(u) < K) {
@@ -1208,8 +1340,8 @@ bool RISCv64RegAlloc::georgeHeuristic(unsigned t, unsigned u) {
}
int K = isFPVReg(t) ? K_fp : K_int;
// adjList.at(t) 现在是安全的,因为 degree.count(t) > 0 保证了 adjList.count(t) > 0
return degree.at(t) < K || precolored.count(u) || adjList.at(t).count(u);
return degree.at(t) < K || adjList.at(t).count(u);
}
void RISCv64RegAlloc::combine(unsigned u, unsigned v) {
@@ -1257,7 +1389,7 @@ void RISCv64RegAlloc::freezeMoves(unsigned u) {
activeMoves.erase(move);
frozenMoves.insert(move);
if (!precolored.count(v_alias) && nodeMoves(v_alias).empty() && degree.at(v_alias) < (isFPVReg(v_alias) ? K_fp : K_int)) {
if (!precolored.count(v_alias) && !coloredNodes.count(v_alias) && nodeMoves(v_alias).empty() && degree.at(v_alias) < (isFPVReg(v_alias) ? K_fp : K_int)) {
freezeWorklist.erase(v_alias);
simplifyWorklist.insert(v_alias);
if (DEEPERDEBUG) {

View File

@@ -11,6 +11,7 @@ namespace sysy {
extern int DEBUG;
extern int DEEPDEBUG;
extern int optLevel;
namespace sysy {

View File

@@ -326,12 +326,19 @@ public:
void addBlock(std::unique_ptr<MachineBasicBlock> block) {
blocks.push_back(std::move(block));
}
void addProtectedArgumentVReg(unsigned vreg) {
protected_argument_vregs.insert(vreg);
}
const std::set<unsigned>& getProtectedArgumentVRegs() const {
return protected_argument_vregs;
}
private:
Function* F;
RISCv64ISel* isel; // 指向创建它的ISel用于获取vreg映射等信息
std::string name;
std::vector<std::unique_ptr<MachineBasicBlock>> blocks;
StackFrameInfo frame_info;
std::set<unsigned> protected_argument_vregs;
};
inline bool isMemoryOp(RVOpcodes opcode) {
switch (opcode) {

View File

@@ -12,6 +12,7 @@ extern int DEBUG;
extern int DEEPDEBUG;
extern int DEBUGLENGTH; // 用于限制调试输出的长度
extern int DEEPERDEBUG; // 用于更深层次的调试输出
extern int optLevel;
namespace sysy {
@@ -44,12 +45,11 @@ private:
void rewriteProgram();
bool doAllocation();
void applyColoring();
void dumpState(const std::string &stage);
void precolorByCallingConvention();
void protectCrossCallVRegs();
// --- 辅助函数 ---
void dumpState(const std::string &stage);
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
void addEdge(unsigned u, unsigned v);

View File

@@ -1007,6 +1007,7 @@ class PhiInst : public Instruction {
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
void refreshMap() {
blk2val.clear();
vsize = getNumOperands() / 2;
for (unsigned i = 0; i < vsize; ++i) {
blk2val[getIncomingBlock(i)] = getIncomingValue(i);
}

View File

@@ -1,24 +0,0 @@
#pragma once
#include "../Pass.h"
namespace sysy {
class LargeArrayToGlobalPass : public OptimizationPass {
public:
static void *ID;
LargeArrayToGlobalPass() : OptimizationPass("LargeArrayToGlobal", Granularity::Module) {}
bool runOnModule(Module *M, AnalysisManager &AM) override;
void *getPassID() const override {
return &ID;
}
private:
unsigned calculateTypeSize(Type *type);
void convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M);
std::string generateUniqueGlobalName(AllocaInst *alloca, Function *F);
};
} // namespace sysy

View File

@@ -109,6 +109,34 @@ public:
}
// PHI指令消除相关方法
static bool eliminateRedundantPhisInFunction(Function* func){
bool changed = false;
std::vector<Instruction *> toDelete;
for (auto &bb : func->getBasicBlocks()) {
for (auto &inst : bb->getInstructions()) {
if (auto phi = dynamic_cast<PhiInst *>(inst.get())) {
auto incoming = phi->getIncomingValues();
if(DEBUG){
std::cout << "Checking Phi: " << phi->getName() << " with " << incoming.size() << " incoming values." << std::endl;
}
if (incoming.size() == 1) {
Value *singleVal = incoming[0].second;
inst->replaceAllUsesWith(singleVal);
toDelete.push_back(inst.get());
}
}
else
break; // 只处理Phi指令
}
}
for (auto *phi : toDelete) {
usedelete(phi);
changed = true; // 标记为已更改
}
return changed; // 返回是否有删除发生
}
//该实现参考了libdivide的算法
static std::pair<int, int> computeMulhMagicNumbers(int divisor) {

View File

@@ -51,6 +51,7 @@ public:
Module *pModule, IRBuilder *pBuilder);
static void initExternalFunction(Module *pModule, IRBuilder *pBuilder);
static void modify_timefuncname(Module *pModule);
};
class SysYIRGenerator : public SysYBaseVisitor {

View File

@@ -24,7 +24,6 @@ add_library(midend_lib STATIC
Pass/Optimize/InductionVariableElimination.cpp
Pass/Optimize/GlobalStrengthReduction.cpp
Pass/Optimize/BuildCFG.cpp
Pass/Optimize/LargeArrayToGlobal.cpp
Pass/Optimize/TailCallOpt.cpp
)

View File

@@ -757,7 +757,7 @@ void BinaryInst::print(std::ostream &os) const {
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000);
std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000007);
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
printOperand(os, getLhs());
os << ", ";
@@ -772,7 +772,7 @@ void BinaryInst::print(std::ostream &os) const {
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000);
std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000007);
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
printOperand(os, getLhs());
os << ", ";
@@ -834,7 +834,7 @@ void CondBrInst::print(std::ostream &os) const {
if (condName.empty()) {
// 使用条件值地址的哈希值作为唯一标识
auto ptr_hash = std::hash<const void*>{}(static_cast<const void*>(condition));
condName = "const_" + std::to_string(ptr_hash % 100000);
condName = "const_" + std::to_string(ptr_hash % 1000000007);
}
// 组合指令地址、条件地址和目标块地址的哈希来确保唯一性
@@ -843,7 +843,7 @@ void CondBrInst::print(std::ostream &os) const {
auto then_hash = std::hash<const void*>{}(static_cast<const void*>(getThenBlock()));
auto else_hash = std::hash<const void*>{}(static_cast<const void*>(getElseBlock()));
size_t combined_hash = inst_hash ^ (cond_hash << 1) ^ (then_hash << 2) ^ (else_hash << 3);
std::string uniqueSuffix = std::to_string(combined_hash % 1000000);
std::string uniqueSuffix = std::to_string(combined_hash % 1000000007);
os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 ";
printOperand(os, condition);

View File

@@ -74,6 +74,7 @@ void DCEContext::run(Function *func, AnalysisManager *AM, bool &changed) {
}
}
}
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func); // 如果有活跃指令,则标记为已更改
}
// 判断指令是否是"天然活跃"的实现

View File

@@ -39,7 +39,7 @@ bool GVN::runOnFunction(Function *func, AnalysisManager &AM) {
}
std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl;
}
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
return changed;
}

View File

@@ -671,13 +671,13 @@ bool GlobalStrengthReductionContext::reduceDivision(BinaryInst *inst) {
}
// x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法)
if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
// auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
replaceWithOptimized(inst, magicResult);
divisionOptCount++;
return true;
}
// if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
// // auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
// Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
// replaceWithOptimized(inst, magicResult);
// divisionOptCount++;
// return true;
// }
return false;
}

View File

@@ -133,6 +133,7 @@ bool InductionVariableEliminationContext::run(Function* F, AnalysisManager& AM)
printDebugInfo();
}
modified |= SysYIROptUtils::eliminateRedundantPhisInFunction(F);
return modified;
}

View File

@@ -1,145 +0,0 @@
#include "../../include/midend/Pass/Optimize/LargeArrayToGlobal.h"
#include "../../IR.h"
#include <unordered_map>
#include <sstream>
#include <string>
namespace sysy {
// Helper function to convert type to string
static std::string typeToString(Type *type) {
if (!type) return "null";
switch (type->getKind()) {
case Type::kInt:
return "int";
case Type::kFloat:
return "float";
case Type::kPointer:
return "ptr";
case Type::kArray: {
auto *arrayType = type->as<ArrayType>();
return "[" + std::to_string(arrayType->getNumElements()) + " x " +
typeToString(arrayType->getElementType()) + "]";
}
default:
return "unknown";
}
}
void *LargeArrayToGlobalPass::ID = &LargeArrayToGlobalPass::ID;
bool LargeArrayToGlobalPass::runOnModule(Module *M, AnalysisManager &AM) {
bool changed = false;
if (!M) {
return false;
}
// Collect all alloca instructions from all functions
std::vector<std::pair<AllocaInst*, Function*>> allocasToConvert;
for (auto &funcPair : M->getFunctions()) {
Function *F = funcPair.second.get();
if (!F || F->getBasicBlocks().begin() == F->getBasicBlocks().end()) {
continue;
}
for (auto &BB : F->getBasicBlocks()) {
for (auto &inst : BB->getInstructions()) {
if (auto *alloca = dynamic_cast<AllocaInst*>(inst.get())) {
Type *allocatedType = alloca->getAllocatedType();
// Calculate the size of the allocated type
unsigned size = calculateTypeSize(allocatedType);
if(DEBUG){
// Debug: print size information
std::cout << "LargeArrayToGlobalPass: Found alloca with size " << size
<< " for type " << typeToString(allocatedType) << std::endl;
}
// Convert arrays of 1KB (1024 bytes) or larger to global variables
if (size >= 1024) {
if(DEBUG)
std::cout << "LargeArrayToGlobalPass: Converting array of size " << size << " to global" << std::endl;
allocasToConvert.emplace_back(alloca, F);
}
}
}
}
}
// Convert the collected alloca instructions to global variables
for (auto [alloca, F] : allocasToConvert) {
convertAllocaToGlobal(alloca, F, M);
changed = true;
}
return changed;
}
unsigned LargeArrayToGlobalPass::calculateTypeSize(Type *type) {
if (!type) return 0;
switch (type->getKind()) {
case Type::kInt:
case Type::kFloat:
return 4;
case Type::kPointer:
return 8;
case Type::kArray: {
auto *arrayType = type->as<ArrayType>();
return arrayType->getNumElements() * calculateTypeSize(arrayType->getElementType());
}
default:
return 0;
}
}
void LargeArrayToGlobalPass::convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M) {
Type *allocatedType = alloca->getAllocatedType();
// Create a unique name for the global variable
std::string globalName = generateUniqueGlobalName(alloca, F);
// Create the global variable - GlobalValue expects pointer type
Type *pointerType = Type::getPointerType(allocatedType);
GlobalValue *globalVar = M->createGlobalValue(globalName, pointerType);
if (!globalVar) {
return;
}
// Replace all uses of the alloca with the global variable
alloca->replaceAllUsesWith(globalVar);
// Remove the alloca instruction from its basic block
for (auto &BB : F->getBasicBlocks()) {
auto &instructions = BB->getInstructions();
for (auto it = instructions.begin(); it != instructions.end(); ++it) {
if (it->get() == alloca) {
instructions.erase(it);
break;
}
}
}
}
std::string LargeArrayToGlobalPass::generateUniqueGlobalName(AllocaInst *alloca, Function *F) {
std::string baseName = alloca->getName();
if (baseName.empty()) {
baseName = "array";
}
// Ensure uniqueness by appending function name and counter
static std::unordered_map<std::string, int> nameCounter;
std::string key = F->getName() + "." + baseName;
int counter = nameCounter[key]++;
std::ostringstream oss;
oss << key << "." << counter;
return oss.str();
}
} // namespace sysy

View File

@@ -661,9 +661,9 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
case StrengthReductionCandidate::DIVIDE_CONST: {
// 任意常数除法
builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst));
replacementValue = generateConstantDivisionReplacement(candidate, builder);
// builder->setPosition(candidate->containingBlock,
// candidate->containingBlock->findInstIterator(candidate->originalInst));
// replacementValue = generateConstantDivisionReplacement(candidate, builder);
break;
}
@@ -683,17 +683,19 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
);
// 检查原值是否为负数
Value* zero = ConstantInteger::get(0);
Value* isNegative = builder->createICmpLTInst(candidate->inductionVar, zero);
Value* shift31condidata = builder->createBinaryInst(
Instruction::Kind::kSra, candidate->inductionVar->getType(),
candidate->inductionVar, ConstantInteger::get(31)
);
// 如果为负数,需要调整结果
Value* adjustment = ConstantInteger::get(candidate->multiplier);
Value* adjustedTemp = builder->createAddInst(temp, adjustment);
// 使用条件分支来模拟select操作
// 为简化起见,这里先用一个更复杂但可工作的方式
// 实际应该创建条件分支,但这里先简化处理
replacementValue = temp; // 简化版本,假设大多数情况下不是负数
Value* adjustment = builder->createAndInst(shift31condidata, maskConstant);
Value* adjustedTemp = builder->createAddInst(candidate->inductionVar, adjustment);
Value* adjustedResult = builder->createBinaryInst(
Instruction::Kind::kAnd, candidate->inductionVar->getType(),
adjustedTemp, maskConstant
);
replacementValue = adjustedResult;
} else {
// 非负数的取模,直接使用位与
replacementValue = builder->createBinaryInst(

View File

@@ -70,20 +70,20 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
// 1. 为函数参数分配内存
builder->setPosition(entryBlock, entryBlock->begin()); // 确保在入口块的开始位置插入
for (auto arg : func->getArguments()) {
// 默认情况下,将所有参数是提升到内存
if (isPromotableToMemory(arg)) {
// 参数的类型就是 AllocaInst 需要分配的类型
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), arg->getName() + ".reg2mem");
// 将参数值 store 到 alloca 中 (这是 Mem2Reg 逆转的关键一步)
valueToAllocaMap[arg] = alloca;
// for (auto arg : func->getArguments()) {
// // 默认情况下,将所有参数是提升到内存
// if (isPromotableToMemory(arg)) {
// // 参数的类型就是 AllocaInst 需要分配的类型
// AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), arg->getName() + ".reg2mem");
// // 将参数值 store 到 alloca 中 (这是 Mem2Reg 逆转的关键一步)
// valueToAllocaMap[arg] = alloca;
// 确保 alloca 位于入口块的顶部,但在所有参数的 store 指令之前
// 通常 alloca 都在 entry block 的最开始
// 这里我们只是创建,并让 builder 决定插入位置 (通常在当前插入点)
// 如果需要严格控制顺序,可能需要手动 insert 到 instruction list
}
}
// // 确保 alloca 位于入口块的顶部,但在所有参数的 store 指令之前
// // 通常 alloca 都在 entry block 的最开始
// // 这里我们只是创建,并让 builder 决定插入位置 (通常在当前插入点)
// // 如果需要严格控制顺序,可能需要手动 insert 到 instruction list
// }
// }
// 2. 为指令结果分配内存
// 遍历所有基本块和指令,找出所有需要分配 Alloca 的指令结果
@@ -123,11 +123,11 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
}
// 插入所有参数的初始 Store 指令
for (auto arg : func->getArguments()) {
if (valueToAllocaMap.count(arg)) { // 检查是否为其分配了 alloca
builder->createStoreInst(arg, valueToAllocaMap[arg]);
}
}
// for (auto arg : func->getArguments()) {
// if (valueToAllocaMap.count(arg)) { // 检查是否为其分配了 alloca
// builder->createStoreInst(arg, valueToAllocaMap[arg]);
// }
// }
builder->setPosition(entryBlock, entryBlock->terminator());
}

View File

@@ -1357,9 +1357,8 @@ void SCCPContext::run(Function *func, AnalysisManager &AM) {
bool changed_control_flow = SimplifyControlFlow(func);
// 如果任何一个阶段修改了 IR标记分析结果为失效
if (changed_constant_propagation || changed_control_flow) {
// AM.invalidate(); // 假设有这样的方法来使所有分析结果失效
}
bool changed = changed_constant_propagation || changed_control_flow;
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
}
// SCCP Pass methods

View File

@@ -13,7 +13,6 @@
#include "GVN.h"
#include "SCCP.h"
#include "BuildCFG.h"
#include "LargeArrayToGlobal.h"
#include "LoopNormalization.h"
#include "LICM.h"
#include "LoopStrengthReduction.h"
@@ -61,8 +60,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
// 注册优化遍
registerOptimizationPass<BuildCFG>();
registerOptimizationPass<LargeArrayToGlobalPass>();
registerOptimizationPass<GVN>();
registerOptimizationPass<SysYDelInstAfterBrPass>();
@@ -98,7 +95,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
this->clearPasses();
this->addPass(&BuildCFG::ID);
this->addPass(&LargeArrayToGlobalPass::ID);
this->run();
this->clearPasses();
@@ -185,19 +181,19 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
printPasses();
}
// this->clearPasses();
// this->addPass(&LoopStrengthReduction::ID);
// this->run();
this->clearPasses();
this->addPass(&LoopStrengthReduction::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n";
printPasses();
}
// // 全局强度削弱优化,包括代数优化和魔数除法
// this->clearPasses();
// this->addPass(&GlobalStrengthReduction::ID);
// this->run();
// 全局强度削弱优化,包括代数优化和魔数除法
this->clearPasses();
this->addPass(&GlobalStrengthReduction::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Global Strength Reduction Optimizations ===\n";

View File

@@ -674,6 +674,8 @@ std::any SysYIRGenerator::visitCompUnit(SysYParser::CompUnitContext *ctx) {
pModule->enterNewScope();
visitChildren(ctx);
pModule->leaveScope();
Utils::modify_timefuncname(pModule);
return pModule;
}
@@ -2403,4 +2405,12 @@ void Utils::initExternalFunction(Module *pModule, IRBuilder *pBuilder) {
}
void Utils::modify_timefuncname(Module *pModule){
auto starttimeFunc = pModule->getExternalFunction("starttime");
auto stoptimeFunc = pModule->getExternalFunction("stoptime");
starttimeFunc->setName("_sysy_starttime");
stoptimeFunc->setName("_sysy_stoptime");
}
} // namespace sysy

View File

@@ -28,7 +28,7 @@ static string argStopAfter;
static string argInputFile;
static bool argFormat = false; // 目前未使用,但保留
static string argOutputFilename;
static int optLevel = 0; // 优化级别默认为0 (不加-O参数时)
int optLevel = 0; // 优化级别默认为0 (不加-O参数时)
void usage(int code) {
const char *msg = "Usage: sysyc [options] inputfile\n\n"