[midend-GSR]将魔数求解移动到utils的静态方法中。
This commit is contained in:
@@ -68,7 +68,7 @@ private:
|
||||
MagicNumber computeMagicNumber(uint32_t divisor);
|
||||
std::pair<int, int> computeMulhMagicNumbers(int divisor);
|
||||
Value* createMagicDivision(BinaryInst* divInst, uint32_t divisor, const MagicNumber& magic);
|
||||
Value* createMagicDivisionLibdivide(BinaryInst* divInst, int divisor, const std::pair<int, int>& magicPair);
|
||||
Value* createMagicDivisionLibdivide(BinaryInst* divInst, int divisor);
|
||||
bool isPowerOfTwo(uint32_t n);
|
||||
int log2OfPowerOfTwo(uint32_t n);
|
||||
|
||||
|
||||
@@ -127,13 +127,6 @@ private:
|
||||
*/
|
||||
bool analyzeInductionVariableRange(const InductionVarInfo* ivInfo, Loop* loop) const;
|
||||
|
||||
/**
|
||||
* 计算用于除法优化的魔数和移位量
|
||||
* @param divisor 除数
|
||||
* @return {魔数, 移位量}
|
||||
*/
|
||||
std::pair<int, int> computeMulhMagicNumbers(int divisor) const;
|
||||
|
||||
/**
|
||||
* 生成除法替换代码
|
||||
* @param candidate 优化候选项
|
||||
|
||||
@@ -107,6 +107,190 @@ public:
|
||||
// 所以当AllocaInst的basetype是PointerType时(一维数组)或者是指向ArrayType的PointerType(多位数组)时,返回true
|
||||
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
|
||||
}
|
||||
|
||||
|
||||
//该实现参考了libdivide的算法
|
||||
static std::pair<int, int> computeMulhMagicNumbers(int divisor) {
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "\n[SR] ===== Computing magic numbers for divisor " << divisor << " (libdivide algorithm) =====" << std::endl;
|
||||
}
|
||||
|
||||
if (divisor == 0) {
|
||||
if (DEBUG) std::cout << "[SR] Error: divisor must be != 0" << std::endl;
|
||||
return {-1, -1};
|
||||
}
|
||||
|
||||
// libdivide 常数
|
||||
const uint8_t LIBDIVIDE_ADD_MARKER = 0x40;
|
||||
const uint8_t LIBDIVIDE_NEGATIVE_DIVISOR = 0x80;
|
||||
|
||||
// 辅助函数:计算前导零个数
|
||||
auto count_leading_zeros32 = [](uint32_t val) -> uint32_t {
|
||||
if (val == 0) return 32;
|
||||
return __builtin_clz(val);
|
||||
};
|
||||
|
||||
// 辅助函数:64位除法返回32位商和余数
|
||||
auto div_64_32 = [](uint32_t high, uint32_t low, uint32_t divisor, uint32_t* rem) -> uint32_t {
|
||||
uint64_t dividend = ((uint64_t)high << 32) | low;
|
||||
uint32_t quotient = dividend / divisor;
|
||||
*rem = dividend % divisor;
|
||||
return quotient;
|
||||
};
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Input divisor: " << divisor << std::endl;
|
||||
}
|
||||
|
||||
// libdivide_internal_s32_gen 算法实现
|
||||
int32_t d = divisor;
|
||||
uint32_t ud = (uint32_t)d;
|
||||
uint32_t absD = (d < 0) ? -ud : ud;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] absD = " << absD << std::endl;
|
||||
}
|
||||
|
||||
uint32_t floor_log_2_d = 31 - count_leading_zeros32(absD);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] floor_log_2_d = " << floor_log_2_d << std::endl;
|
||||
}
|
||||
|
||||
// 检查 absD 是否为2的幂
|
||||
if ((absD & (absD - 1)) == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " 是2的幂,使用移位方法" << std::endl;
|
||||
}
|
||||
|
||||
// 对于2的幂,我们只使用移位,不需要魔数
|
||||
int shift = floor_log_2_d;
|
||||
if (d < 0) shift |= 0x80; // 标记负数
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Power of 2 result: magic=0, shift=" << shift << std::endl;
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 对于我们的目的,我们将在IR生成中以不同方式处理2的幂
|
||||
// 返回特殊标记
|
||||
return {0, shift};
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " is not a power of 2, computing magic number" << std::endl;
|
||||
}
|
||||
|
||||
// 非2的幂除数的魔数计算
|
||||
uint8_t more;
|
||||
uint32_t rem, proposed_m;
|
||||
|
||||
// 计算 proposed_m = floor(2^(floor_log_2_d + 31) / absD)
|
||||
proposed_m = div_64_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
|
||||
const uint32_t e = absD - rem;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] proposed_m = " << proposed_m << ", rem = " << rem << ", e = " << e << std::endl;
|
||||
}
|
||||
|
||||
// 确定是否需要"加法"版本
|
||||
const bool branchfree = false; // 使用分支版本
|
||||
|
||||
if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) {
|
||||
// 这个幂次有效
|
||||
more = (uint8_t)(floor_log_2_d - 1);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using basic algorithm, shift = " << (int)more << std::endl;
|
||||
}
|
||||
} else {
|
||||
// 我们需要上升一个等级
|
||||
proposed_m += proposed_m;
|
||||
const uint32_t twice_rem = rem + rem;
|
||||
if (twice_rem >= absD || twice_rem < rem) {
|
||||
proposed_m += 1;
|
||||
}
|
||||
more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using add algorithm, proposed_m = " << proposed_m << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
proposed_m += 1;
|
||||
int32_t magic = (int32_t)proposed_m;
|
||||
|
||||
// 处理负除数
|
||||
if (d < 0) {
|
||||
more |= LIBDIVIDE_NEGATIVE_DIVISOR;
|
||||
if (!branchfree) {
|
||||
magic = -magic;
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Negative divisor, magic = " << magic << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 为我们的IR生成提取移位量和标志
|
||||
int shift = more & 0x3F; // 移除标志,保留移位量(位0-5)
|
||||
bool need_add = (more & LIBDIVIDE_ADD_MARKER) != 0;
|
||||
bool is_negative = (more & LIBDIVIDE_NEGATIVE_DIVISOR) != 0;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Final result: magic = " << magic << ", more = " << (int)more
|
||||
<< " (0x" << std::hex << (int)more << std::dec << ")" << std::endl;
|
||||
std::cout << "[SR] Shift = " << shift << ", need_add = " << need_add
|
||||
<< ", is_negative = " << is_negative << std::endl;
|
||||
|
||||
// Test the magic number using the correct libdivide algorithm
|
||||
std::cout << "[SR] Testing magic number (libdivide algorithm):" << std::endl;
|
||||
int test_values[] = {1, 7, 37, 100, 999, -1, -7, -37, -100};
|
||||
|
||||
for (int test_val : test_values) {
|
||||
int64_t quotient;
|
||||
|
||||
// 实现正确的libdivide算法
|
||||
int64_t product = (int64_t)test_val * magic;
|
||||
int64_t high_bits = product >> 32;
|
||||
|
||||
if (need_add) {
|
||||
// ADD_MARKER情况:移位前加上被除数
|
||||
// 这是libdivide的关键洞察!
|
||||
high_bits += test_val;
|
||||
quotient = high_bits >> shift;
|
||||
} else {
|
||||
// 正常情况:只是移位
|
||||
quotient = high_bits >> shift;
|
||||
}
|
||||
|
||||
// 符号修正:这是libdivide有符号除法的关键部分!
|
||||
// 如果被除数为负,商需要加1来匹配C语言的截断除法语义
|
||||
if (test_val < 0) {
|
||||
quotient += 1;
|
||||
}
|
||||
|
||||
int expected = test_val / divisor;
|
||||
|
||||
bool correct = (quotient == expected);
|
||||
std::cout << "[SR] " << test_val << " / " << divisor << " = " << quotient
|
||||
<< " (expected " << expected << ") " << (correct ? "✓" : "✗") << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 返回魔数、移位量,并在移位中编码ADD_MARKER标志
|
||||
// 我们将使用移位的第6位表示ADD_MARKER,第7位表示负数(如果需要)
|
||||
int encoded_shift = shift;
|
||||
if (need_add) {
|
||||
encoded_shift |= 0x40; // 设置第6位表示ADD_MARKER
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Encoding ADD_MARKER in shift: " << encoded_shift << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return {magic, encoded_shift};
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}// namespace sysy
|
||||
Reference in New Issue
Block a user