Merge branch 'midend-SCCP' into midend

This commit is contained in:
rain2133
2025-08-01 14:02:14 +08:00
15 changed files with 1512 additions and 406 deletions

View File

@@ -514,12 +514,15 @@ public:
explicit BasicBlock(Function *parent, const std::string &name = "")
: Value(Type::getLabelType(), name), parent(parent) {}
~BasicBlock() override {
for (auto pre : predecessors) {
pre->removeSuccessor(this);
}
for (auto suc : successors) {
suc->removePredecessor(this);
}
// for (auto pre : predecessors) {
// pre->removeSuccessor(this);
// }
// for (auto suc : successors) {
// suc->removePredecessor(this);
// }
// 这些关系应该在 BasicBlock 被从 Function 中移除时,
// 由负责 CFG 优化的 Pass (例如 SCCP 的 RemoveDeadBlock) 显式地清理。
// 析构函数只负责清理 BasicBlock 自身拥有的资源(例如,指令列表)。
}
public:
@@ -599,7 +602,7 @@ public:
prev->addSuccessor(next);
next->addPredecessor(prev);
}
void removeInst(iterator pos) { instructions.erase(pos); }
iterator removeInst(iterator pos) { return instructions.erase(pos); }
void removeInst(Instruction *inst) {
auto pos = std::find_if(instructions.begin(), instructions.end(),
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
@@ -626,6 +629,21 @@ class User : public Value {
explicit User(Type *type, const std::string &name = "") : Value(type, name) {}
public:
// ~User() override {
// // 当 User 对象被销毁时例如LoadInst 或 StoreInst 被删除时),
// // 它必须通知它所使用的所有 Value将对应的 Use 关系从它们的 uses 列表中移除。
// // 这样可以防止 Value 的 uses 列表中出现悬空的 Use 对象。
// for (const auto &use_ptr : operands) {
// // 确保 use_ptr 非空,并且其内部指向的 Value* 也非空
// // (虽然通常情况下不会为空,但为了健壮性考虑)
// if (use_ptr && use_ptr->getValue()) {
// use_ptr->getValue()->removeUse(use_ptr);
// }
// }
// // operands 向量本身是 std::vector<std::shared_ptr<Use>>
// // 在此析构函数结束后operands 向量会被销毁,其内部的 shared_ptr 也会被释放,
// // 如果 shared_ptr 引用计数降为0Use 对象本身也会被销毁。
// }
unsigned getNumOperands() const { return operands.size(); } ///< 获取操作数数量
auto operand_begin() const { return operands.begin(); } ///< 返回操作数列表的开头迭代器
auto operand_end() const { return operands.end(); } ///< 返回操作数列表的结尾迭代器
@@ -695,15 +713,13 @@ class Instruction : public User {
kCondBr = 0x1UL << 30,
kBr = 0x1UL << 31,
kReturn = 0x1UL << 32,
kUnreachable = 0x1UL << 33,
// mem op
kAlloca = 0x1UL << 33,
kLoad = 0x1UL << 34,
kStore = 0x1UL << 35,
kGetElementPtr = 0x1UL << 36,
kMemset = 0x1UL << 37,
// kGetSubArray = 0x1UL << 38,
// Constant Kind removed as Constants are now Values, not Instructions.
// kConstant = 0x1UL << 37, // Conflicts with kMemset if kept as is
kAlloca = 0x1UL << 34,
kLoad = 0x1UL << 35,
kStore = 0x1UL << 36,
kGetElementPtr = 0x1UL << 37,
kMemset = 0x1UL << 38,
// phi
kPhi = 0x1UL << 39,
kBitItoF = 0x1UL << 40,
@@ -832,7 +848,7 @@ public:
return kind & MemoryOpMask;
}
bool isTerminator() const {
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn;
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn | kUnreachable;
return kind & TerminatorOpMask;
}
bool isCmp() const {
@@ -852,6 +868,7 @@ public:
}
bool isUnconditional() const { return kind == kBr; }
bool isConditional() const { return kind == kCondBr; }
bool isCondBr() const { return kind == kCondBr; }
bool isPhi() const { return kind == kPhi; }
bool isAlloca() const { return kind == kAlloca; }
bool isLoad() const { return kind == kLoad; }
@@ -860,6 +877,7 @@ public:
bool isMemset() const { return kind == kMemset; }
bool isCall() const { return kind == kCall; }
bool isReturn() const { return kind == kReturn; }
bool isUnreachable() const { return kind == kUnreachable; }
bool isDefine() const {
static constexpr uint64_t DefineOpMask = kAlloca | kStore | kPhi;
return (kind & DefineOpMask) != 0U;
@@ -894,6 +912,9 @@ class PhiInst : public Instruction {
public:
Value* getValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
BasicBlock* getBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
//增加llvm同名方法实现获取value和block
Value* getIncomingValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
BasicBlock* getIncomingBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
@@ -1059,12 +1080,10 @@ class UncondBrInst : public Instruction {
friend class Function;
protected:
UncondBrInst(BasicBlock *block, std::vector<Value *> args,
UncondBrInst(BasicBlock *block,
BasicBlock *parent = nullptr)
: Instruction(kBr, Type::getVoidType(), parent, "") {
// assert(block->getNumArguments() == args.size());
addOperand(block);
addOperands(args);
}
public:
@@ -1072,6 +1091,16 @@ public:
auto getArguments() const {
return make_range(std::next(operand_begin()), operand_end());
}
std::vector<BasicBlock *> getSuccessors() const {
std::vector<BasicBlock *> succs;
// 假设无条件分支的目标块是它的第一个操作数
if (getNumOperands() > 0) {
if (auto target_bb = dynamic_cast<BasicBlock *>(getOperand(0))) {
succs.push_back(target_bb);
}
}
return succs;
}
}; // class UncondBrInst
@@ -1083,17 +1112,12 @@ class CondBrInst : public Instruction {
friend class Function;
protected:
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
const std::vector<Value *> &thenArgs,
const std::vector<Value *> &elseArgs, BasicBlock *parent = nullptr)
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
BasicBlock *parent = nullptr)
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
// assert(thenBlock->getNumArguments() == thenArgs.size() and
// elseBlock->getNumArguments() == elseArgs.size());
addOperand(condition);
addOperand(thenBlock);
addOperand(elseBlock);
addOperands(thenArgs);
addOperands(elseArgs);
}
public:
Value* getCondition() const { return getOperand(0); }
@@ -1103,29 +1127,39 @@ public:
BasicBlock* getElseBlock() const {
return dynamic_cast<BasicBlock *>(getOperand(2));
}
// auto getThenArguments() const {
// auto begin = std::next(operand_begin(), 3);
// // auto end = std::next(begin, getThenBlock()->getNumArguments());
// return make_range(begin, end);
// }
// auto getElseArguments() const {
// auto begin =
// std::next(operand_begin(), 3 + getThenBlock()->getNumArguments());
// auto end = operand_end();
// return make_range(begin, end);
// }
std::vector<BasicBlock *> getSuccessors() const {
std::vector<BasicBlock *> succs;
// 假设条件分支的真实块是第二个操作数,假块是第三个操作数
// 操作数通常是:[0] 条件值, [1] TrueTargetBlock, [2] FalseTargetBlock
if (getNumOperands() > 2) {
if (auto true_bb = getThenBlock()) {
succs.push_back(true_bb);
}
if (auto false_bb = getElseBlock()) {
succs.push_back(false_bb);
}
}
return succs;
}
}; // class CondBrInst
class UnreachableInst : public Instruction {
public:
// 构造函数:设置指令类型为 kUnreachable
explicit UnreachableInst(const std::string& name, BasicBlock *parent = nullptr)
: Instruction(kUnreachable, Type::getVoidType(), parent, "") {}
};
//! Allocate memory for stack variables, used for non-global variable declartion
class AllocaInst : public Instruction {
friend class IRBuilder;
friend class Function;
protected:
AllocaInst(Type *type, const std::vector<Value *> &dims = {},
AllocaInst(Type *type,
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kAlloca, type, parent, name) {
addOperands(dims);
}
public:
@@ -1133,9 +1167,6 @@ public:
Type* getAllocatedType() const {
return getType()->as<PointerType>()->getBaseType();
} ///< 获取分配的类型
int getNumDims() const { return getNumOperands(); }
auto getDims() const { return getOperands(); }
Value* getDim(int index) { return getOperand(index); }
}; // class AllocaInst
@@ -1182,21 +1213,15 @@ class LoadInst : public Instruction {
friend class Function;
protected:
LoadInst(Value *pointer, const std::vector<Value *> &indices = {},
LoadInst(Value *pointer,
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kLoad, pointer->getType()->as<PointerType>()->getBaseType(),
parent, name) {
addOperand(pointer);
addOperands(indices);
}
public:
int getNumIndices() const { return getNumOperands() - 1; }
Value* getPointer() const { return getOperand(0); }
auto getIndices() const {
return make_range(std::next(operand_begin()), operand_end());
}
Value* getIndex(int index) const { return getOperand(index + 1); }
}; // class LoadInst
@@ -1207,22 +1232,15 @@ class StoreInst : public Instruction {
protected:
StoreInst(Value *value, Value *pointer,
const std::vector<Value *> &indices = {},
BasicBlock *parent = nullptr, const std::string &name = "")
: Instruction(kStore, Type::getVoidType(), parent, name) {
addOperand(value);
addOperand(pointer);
addOperands(indices);
}
public:
int getNumIndices() const { return getNumOperands() - 2; }
Value* getValue() const { return getOperand(0); }
Value* getPointer() const { return getOperand(1); }
auto getIndices() const {
return make_range(std::next(operand_begin(), 2), operand_end());
}
Value* getIndex(int index) const { return getOperand(index + 2); }
}; // class StoreInst
@@ -1361,20 +1379,18 @@ protected:
protected:
GlobalValue(Module *parent, Type *type, const std::string &name,
const std::vector<Value *> &dims = {},
ValueCounter init = {})
: Value(type, name), parent(parent) {
assert(type->isPointer());
// addOperands(dims);
// 维度信息已经被记录到Type中dim只是为了方便初始化
numDims = dims.size();
numDims = 0;
if (init.size() == 0) {
unsigned num = 1;
for (unsigned i = 0; i < numDims; i++) {
// Assume dims elements are ConstantInteger and cast appropriately
auto dim_val = dynamic_cast<ConstantInteger*>(dims[i]);
assert(dim_val && "GlobalValue dims must be constant integers");
num *= dim_val->getInt();
auto arrayType = type->as<ArrayType>();
while (arrayType) {
numDims++;
num *= arrayType->getNumElements();
arrayType = arrayType->getElementType()->as<ArrayType>();
}
if (dynamic_cast<PointerType *>(type)->getBaseType() == Type::getFloatType()) {
init.push_back(ConstantFloating::get(0.0F), num); // Use new constant factory
@@ -1386,9 +1402,6 @@ protected:
}
public:
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
// auto getDims() const { return getOperands(); } ///< 获取维度列表
unsigned getNumIndices() const {
return numDims;
} ///< 获取维度数量
@@ -1430,13 +1443,19 @@ class ConstantVariable : public Value {
ValueCounter initValues; ///< 值
protected:
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init,
const std::vector<Value *> &dims = {})
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init)
: Value(type, name), parent(parent) {
assert(type->isPointer());
numDims = dims.size();
// numDims = dims.size();
numDims = 0;
if(type->as<PointerType>()->getBaseType()->isArray()) {
auto arrayType = type->as<ArrayType>();
while (arrayType) {
numDims++;
arrayType = arrayType->getElementType()->as<ArrayType>();
}
}
initValues = init;
// addOperands(dims); 同GlobalValue维度信息已经被记录到Type中dim只是为了方便初始化
}
public:
@@ -1468,9 +1487,6 @@ class ConstantVariable : public Value {
return getByIndex(index);
} ///< 通过多维索引indices获取初始值
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
// auto getDims() const { return getOperands(); } ///< 获取维度列表
const ValueCounter& getInitValues() const { return initValues; } ///< 获取初始值
};
@@ -1529,13 +1545,12 @@ class Module {
return result.first->second.get();
} ///< 创建外部函数
///< 变量创建伴随着符号表的更新
GlobalValue* createGlobalValue(const std::string &name, Type *type, const std::vector<Value *> &dims = {},
const ValueCounter &init = {}) {
GlobalValue* createGlobalValue(const std::string &name, Type *type, const ValueCounter &init = {}) {
bool isFinished = variableTable.isCurNodeNull();
if (isFinished) {
variableTable.enterGlobalScope();
}
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, dims, init));
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, init));
if (isFinished) {
variableTable.leaveScope();
}
@@ -1544,9 +1559,8 @@ class Module {
}
return dynamic_cast<GlobalValue *>(result);
} ///< 创建全局变量
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init,
const std::vector<Value *> &dims = {}) {
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init, dims));
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init) {
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init));
if (result == nullptr) {
return nullptr;
}

View File

@@ -239,31 +239,30 @@ class IRBuilder {
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建return指令
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock, const std::vector<Value *> &args) {
auto inst = new UncondBrInst(thenBlock, args, block);
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock) {
auto inst = new UncondBrInst(thenBlock, block);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建无条件指令
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs) {
auto inst = new CondBrInst(condition, thenBlock, elseBlock, thenArgs, elseArgs, block);
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock) {
auto inst = new CondBrInst(condition, thenBlock, elseBlock, block);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建条件跳转指令
AllocaInst * createAllocaInst(Type *type, const std::vector<Value *> &dims = {}, const std::string &name = "") {
auto inst = new AllocaInst(type, dims, block, name);
UnreachableInst * createUnreachableInst(const std::string &name = "") {
auto inst = new UnreachableInst(name, block);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建不可达指令
AllocaInst * createAllocaInst(Type *type, const std::string &name = "") {
auto inst = new AllocaInst(type, block, name);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建分配指令
AllocaInst * createAllocaInstWithoutInsert(Type *type, const std::vector<Value *> &dims = {}, BasicBlock *parent = nullptr,
const std::string &name = "") {
auto inst = new AllocaInst(type, dims, parent, name);
assert(inst);
return inst;
} ///< 创建不插入指令列表的分配指令[仅用于phi指令]
LoadInst * createLoadInst(Value *pointer, const std::vector<Value *> &indices = {}, const std::string &name = "") {
std::string newName;
if (name.empty()) {
@@ -275,7 +274,7 @@ class IRBuilder {
newName = name;
}
auto inst = new LoadInst(pointer, indices, block, newName);
auto inst = new LoadInst(pointer, block, newName);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
@@ -286,9 +285,8 @@ class IRBuilder {
block->getInstructions().emplace(position, inst);
return inst;
} ///< 创建memset指令
StoreInst * createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices = {},
const std::string &name = "") {
auto inst = new StoreInst(value, pointer, indices, block, name);
StoreInst * createStoreInst(Value *value, Value *pointer, const std::string &name = "") {
auto inst = new StoreInst(value, pointer, block, name);
assert(inst);
block->getInstructions().emplace(position, inst);
return inst;
@@ -308,24 +306,6 @@ class IRBuilder {
block->getInstructions().emplace(block->begin(), inst);
return inst;
} ///< 创建Phi指令
// GetElementPtrInst* createGetElementPtrInst(Value *basePointer,
// const std::vector<Value *> &indices = {},
// const std::string &name = "") {
// std::string newName;
// if (name.empty()) {
// std::stringstream ss;
// ss << tmpIndex;
// newName = ss.str();
// tmpIndex++;
// } else {
// newName = name;
// }
// auto inst = new GetElementPtrInst(basePointer, indices, block, newName);
// assert(inst);
// block->getInstructions().emplace(position, inst);
// return inst;
// }
/**
* @brief 根据 LLVM 设计模式创建 GEP 指令。
* 它会自动推断返回类型,无需手动指定。

View File

@@ -1,196 +1,139 @@
#pragma once
#include "IR.h"
#include "Pass.h"
#include "SysYIROptUtils.h"
#include <cassert>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <unordered_set>
#include <vector>
#include <variant>
#include <functional>
namespace sysy {
// 稀疏条件常量传播类
// Sparse Conditional Constant Propagation
/*
伪代码
function SCCP_Optimization(Module):
for each Function in Module:
changed = true
while changed:
changed = false
// 阶段1: 常量传播与折叠
changed |= PropagateConstants(Function)
// 阶段2: 控制流简化
changed |= SimplifyControlFlow(Function)
end while
end for
function PropagateConstants(Function):
// 初始化
executableBlocks = {entryBlock}
valueState = map<Value, State> // 值->状态映射
instWorkList = Queue()
edgeWorkList = Queue()
// 初始化工作列表
for each inst in entryBlock:
instWorkList.push(inst)
// 迭代处理
while !instWorkList.empty() || !edgeWorkList.empty():
// 处理指令工作列表
while !instWorkList.empty():
inst = instWorkList.pop()
// 如果指令是可执行基本块中的
if executableBlocks.contains(inst.parent):
ProcessInstruction(inst)
// 处理边工作列表
while !edgeWorkList.empty():
edge = edgeWorkList.pop()
ProcessEdge(edge)
// 应用常量替换
for each inst in Function:
if valueState[inst] == CONSTANT:
ReplaceWithConstant(inst, valueState[inst].constant)
changed = true
return changed
function ProcessInstruction(Instruction inst):
switch inst.type:
//二元操作
case BINARY_OP:
lhs = GetValueState(inst.operands[0])
rhs = GetValueState(inst.operands[1])
if lhs == CONSTANT && rhs == CONSTANT:
newState = ComputeConstant(inst.op, lhs.value, rhs.value)
UpdateState(inst, newState)
else if lhs == BOTTOM || rhs == BOTTOM:
UpdateState(inst, BOTTOM)
//phi
case PHI:
mergedState =
for each incoming in inst.incomings:
// 检查每个输入的状态
if executableBlocks.contains(incoming.block):
incomingState = GetValueState(incoming.value)
mergedState = Meet(mergedState, incomingState)
UpdateState(inst, mergedState)
// 条件分支
case COND_BRANCH:
cond = GetValueState(inst.condition)
if cond == CONSTANT:
// 判断条件分支
if cond.value == true:
AddEdgeToWorkList(inst.parent, inst.trueTarget)
else:
AddEdgeToWorkList(inst.parent, inst.falseTarget)
else if cond == BOTTOM:
AddEdgeToWorkList(inst.parent, inst.trueTarget)
AddEdgeToWorkList(inst.parent, inst.falseTarget)
case UNCOND_BRANCH:
AddEdgeToWorkList(inst.parent, inst.target)
// 其他指令处理...
function ProcessEdge(Edge edge):
fromBB, toBB = edge
if !executableBlocks.contains(toBB):
executableBlocks.add(toBB)
for each inst in toBB:
if inst is PHI:
instWorkList.push(inst)
else:
instWorkList.push(inst) // 非PHI指令
// 更新PHI节点的输入
for each phi in toBB.phis:
instWorkList.push(phi)
function SimplifyControlFlow(Function):
changed = false
// 标记可达基本块
ReachableBBs = FindReachableBlocks(Function.entry)
// 删除不可达块
for each bb in Function.blocks:
if !ReachableBBs.contains(bb):
RemoveDeadBlock(bb)
changed = true
// 简化条件分支
for each bb in Function.blocks:
terminator = bb.terminator
if terminator is COND_BRANCH:
cond = GetValueState(terminator.condition)
if cond == CONSTANT:
SimplifyBranch(terminator, cond.value)
changed = true
return changed
function RemoveDeadBlock(BasicBlock bb):
// 1. 更新前驱块的分支指令
for each pred in bb.predecessors:
UpdateTerminator(pred, bb)
// 2. 更新后继块的PHI节点
for each succ in bb.successors:
RemovePhiIncoming(succ, bb)
// 3. 删除块内所有指令
for each inst in bb.instructions:
inst.remove()
// 4. 从函数中移除基本块
Function.removeBlock(bb)
function Meet(State a, State b):
if a == : return b
if b == : return a
if a == ⊥ || b == ⊥: return ⊥
if a.value == b.value: return a
return ⊥
function UpdateState(Value v, State newState):
oldState = valueState.get(v, )
if newState != oldState:
valueState[v] = newState
for each user in v.users:
if user is Instruction:
instWorkList.push(user)
*/
enum class LatticeValue {
Top, // (Unknown)
Constant, // c (Constant)
Bottom // ⊥ (Undefined / Varying)
// 定义三值格 (Three-valued Lattice) 的状态
enum class LatticeVal {
Top, // (未知 / 未初始化)
Constant, // c (常量)
Bottom // ⊥ (不确定 / 变化 / 未定义)
};
// LatticeValue: 用于表示值的状态Top表示未知Constant表示常量Bottom表示未定义或变化的值。
// 这里的LatticeValue用于跟踪每个SSA值变量、指令结果的状态
// 以便在SCCP过程中进行常量传播和控制流简化。
//TODO: 下列数据结构考虑集成到类中,避免重命名问题
static std::set<Instruction *> Worklist;
static std::unordered_set<BasicBlock*> Executable_Blocks;
static std::queue<std::pair<BasicBlock *, BasicBlock *> > Executable_Edges;
static std::map<Value*, LatticeValue> valueState;
// 新增枚举来区分常量的实际类型
enum class ValueType {
Integer,
Float,
Unknown // 用于 Top 和 Bottom 状态
};
class SCCP {
// 用于表示 SSA 值的具体状态(包含格值和常量值)
struct SSAPValue {
LatticeVal state;
std::variant<int, float> constantVal; // 使用 std::variant 存储 int 或 float
ValueType constant_type; // 记录常量是整数还是浮点数
// 默认构造函数,初始化为 Top
SSAPValue() : state(LatticeVal::Top), constantVal(0), constant_type(ValueType::Unknown) {}
// 构造函数,用于创建 Bottom 状态
SSAPValue(LatticeVal s) : state(s), constantVal(0), constant_type(ValueType::Unknown) {
assert((s == LatticeVal::Top || s == LatticeVal::Bottom) && "SSAPValue(LatticeVal) only for Top/Bottom");
}
// 构造函数,用于创建 int Constant 状态
SSAPValue(int c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Integer) {}
// 构造函数,用于创建 float Constant 状态
SSAPValue(float c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Float) {}
// 比较操作符,用于判断状态是否改变
bool operator==(const SSAPValue &other) const {
if (state != other.state)
return false;
if (state == LatticeVal::Constant) {
if (constant_type != other.constant_type) return false; // 类型必须匹配
return constantVal == other.constantVal; // std::variant 会比较内部值
}
return true; // Top == Top, Bottom == Bottom
}
bool operator!=(const SSAPValue &other) const { return !(*this == other); }
};
// SCCP 上下文类,持有每个函数运行时的状态
class SCCPContext {
private:
Module *pModule;
IRBuilder *builder; // IR 构建器,用于插入指令和创建常量
// 工作列表
// 存储需要重新评估的指令
std::queue<Instruction *> instWorkList;
// 存储需要重新评估的控制流边 (pair: from_block, to_block)
std::queue<std::pair<BasicBlock *, BasicBlock *>> edgeWorkList;
// 格值映射SSA Value 到其当前状态
std::map<Value *, SSAPValue> valueState;
// 可执行基本块集合
std::unordered_set<BasicBlock *> executableBlocks;
// 追踪已访问的CFG边防止重复添加使用 SysYIROptUtils::PairHash
std::unordered_set<std::pair<BasicBlock*, BasicBlock*>, SysYIROptUtils::PairHash> visitedCFGEdges;
// 辅助函数:格操作 Meet
SSAPValue Meet(const SSAPValue &a, const SSAPValue &b);
// 辅助函数:获取值的当前状态,如果不存在则默认为 Top
SSAPValue GetValueState(Value *v);
// 辅助函数:更新值的状态,如果状态改变,将所有用户加入指令工作列表
void UpdateState(Value *v, SSAPValue newState);
// 辅助函数:将边加入边工作列表,并更新可执行块
void AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB);
// 辅助函数:标记一个块为可执行
void MarkBlockExecutable(BasicBlock* block);
// 辅助函数:对二元操作进行常量折叠
SSAPValue ComputeConstant(BinaryInst *binaryinst, SSAPValue lhsVal, SSAPValue rhsVal);
// 辅助函数:对一元操作进行常量折叠
SSAPValue ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal);
// 主要优化阶段
// 阶段1: 常量传播与折叠
bool PropagateConstants(Function *func);
// 阶段2: 控制流简化
bool SimplifyControlFlow(Function *func);
// 辅助函数:处理单条指令
void ProcessInstruction(Instruction *inst);
// 辅助函数:处理单条控制流边
void ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge);
// 控制流简化辅助函数
// 查找所有可达的基本块 (基于常量条件)
std::unordered_set<BasicBlock *> FindReachableBlocks(Function *func);
// 移除死块
void RemoveDeadBlock(BasicBlock *bb, Function *func);
// 简化分支(将条件分支替换为无条件分支)
void SimplifyBranch(CondBrInst*brInst, bool condVal); // 保持 BranchInst
// 更新前驱块的终结指令(当一个后继块被移除时)
void UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc);
// 移除 Phi 节点的入边(当其前驱块被移除时)
void RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred);
public:
SCCP(Module *pMoudle) : pModule(pMoudle) {}
SCCPContext(IRBuilder *builder) : builder(builder) {}
void run();
bool PropagateConstants(Function *function);
bool SimplifyControlFlow(Function *function);
void ProcessInstruction(Instruction *inst);
void ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge);
void RemoveDeadBlock(BasicBlock *bb);
void UpdateState(Value *v, LatticeValue newState);
LatticeValue Meet(LatticeValue a, LatticeValue b);
LatticeValue GetValueState(Value *v);
// 运行 SCCP 优化
void run(Function *func, AnalysisManager &AM);
};
} // namespace sysy
// SCCP 优化遍类,继承自 OptimizationPass
class SCCP : public OptimizationPass {
private:
IRBuilder *builder; // IR 构建器,作为 Pass 的成员,传入 Context
public:
SCCP(IRBuilder *builder) : OptimizationPass("SCCP", Granularity::Function), builder(builder) {}
static void *ID;
bool runOnFunction(Function *F, AnalysisManager &AM) override;
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
void *getPassID() const override { return &ID; }
};
} // namespace sysy

View File

@@ -2,6 +2,7 @@
#include "IR.h"
extern int DEBUG;
namespace sysy {
// 优化工具类,包含一些通用的优化方法
@@ -10,13 +11,88 @@ namespace sysy {
class SysYIROptUtils{
public:
// 仅仅删除use关系
static void usedelete(Instruction *instr) {
for (auto &use : instr->getOperands()) {
Value* val = use->getValue();
val->removeUse(use);
struct PairHash {
template <class T1, class T2>
std::size_t operator () (const std::pair<T1, T2>& p) const {
auto h1 = std::hash<T1>{}(p.first);
auto h2 = std::hash<T2>{}(p.second);
// 简单的组合哈希值,可以更复杂以减少冲突
// 使用 boost::hash_combine 的简化版本
return h1 ^ (h2 << 1);
}
};
static void RemoveUserOperandUses(User *user) {
if (!user) {
return;
}
// 遍历 User 的 operands 列表。
// 由于 operands 是 protected 成员,我们需要一个临时方法来访问它,
// 或者在 User 类中添加一个 friend 声明。
// 假设 User 内部有一个像 getOperands() 这样的公共方法返回 operands 的引用,
// 或者将 SysYIROptUtils 声明为 User 的 friend。
// 为了示例,我将假设可以直接访问 user->operands 或通过一个getter。
// 如果无法直接访问,请在 IR.h 的 User 类中添加:
// public: const std::vector<std::shared_ptr<Use>>& getOperands() const { return operands; }
// 迭代 copies of shared_ptr to avoid issues if removeUse modifies the list
// (though remove should handle it, iterating a copy is safer or reverse iteration).
// Since we'll clear the vector at the end, iterating forward is fine.
for (const auto& use_ptr : user->getOperands()) { // 假设 getOperands() 可用
if (use_ptr) {
Value *val = use_ptr->getValue(); // 获取 Use 指向的 Value (如 AllocaInst)
if (val) {
val->removeUse(use_ptr); // 通知 Value 从其 uses 列表中移除此 Use 关系
}
}
}
// 清空 User 的 operands 向量。这会递减 User 持有的 shared_ptr<Use> 的引用计数。
// 当引用计数降为 0 时Use 对象本身将被销毁。
// User::operands.clear(); // 这个步骤会在 Instruction 的析构函数中自动完成,因为它是 vector 成员
// 或者我们可以在 User::removeOperand 方法中确保 Use 对象从 operands 中移除。
// 实际上,只要 Value::removeUse(use_ptr) 被调用了,
// 当 Instruction 所在的 unique_ptr 销毁时,它的 operands vector 也会被销毁。
// 所以这里不需要显式 clear()
}
static void usedelete(Instruction *inst) {
assert(inst && "Instruction to delete cannot be null.");
BasicBlock *parentBlock = inst->getParent();
assert(parentBlock && "Instruction must have a parent BasicBlock to be deleted.");
// 步骤1: 处理所有使用者,将他们从使用 inst 变为使用 UndefinedValue
// 这将清理 inst 作为 Value 时的 uses 列表
if (!inst->getUses().empty()) {
inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()));
}
// 步骤2: 清理 inst 作为 User 时的操作数关系
// 通知 inst 所使用的所有 Value (如 AllocaInst),移除对应的 Use 关系。
// 这里的 inst 实际上是一个 User*,所以可以安全地向下转型。
RemoveUserOperandUses(static_cast<User*>(inst));
// 步骤3: 物理删除指令
// 这会导致 Instruction 对象的 unique_ptr 销毁,从而调用其析构函数链。
parentBlock->removeInst(inst);
}
static BasicBlock::iterator usedelete(BasicBlock::iterator inst_it) {
Instruction *inst_to_delete = inst_it->get();
BasicBlock *parentBlock = inst_to_delete->getParent();
assert(parentBlock && "Instruction must have a parent BasicBlock for iterator deletion.");
// 步骤1: 处理所有使用者
if (!inst_to_delete->getUses().empty()) {
inst_to_delete->replaceAllUsesWith(UndefinedValue::get(inst_to_delete->getType()));
}
// 步骤2: 清理操作数关系
RemoveUserOperandUses(static_cast<User*>(inst_to_delete));
// 步骤3: 物理删除指令并返回下一个迭代器
return parentBlock->removeInst(inst_it);
}
// 判断是否是全局变量
static bool isGlobal(Value *val) {
@@ -26,7 +102,17 @@ public:
// 判断是否是数组
static bool isArr(Value *val) {
auto aval = dynamic_cast<AllocaInst *>(val);
return aval != nullptr && aval->getNumDims() != 0;
// 如果是 AllocaInst 且通过Type::isArray()判断为数组类型
return aval && aval->getType()->as<PointerType>()->getBaseType()->isArray();
}
// 判断是否是指向数组的指针
static bool isArrPointer(Value *val) {
auto aval = dynamic_cast<AllocaInst *>(val);
// 如果是 AllocaInst 且通过Type::isPointer()判断为指针;
auto baseType = aval->getType()->as<PointerType>()->getBaseType();
// 在sysy中函数的数组参数会退化成指针
// 所以当AllocaInst的basetype是PointerType时一维数组或者是指向ArrayType的PointerType多位数组返回true
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
}
};