[midend-CallGraph]增加调用图分析遍

This commit is contained in:
rain2133
2025-08-08 16:24:13 +08:00
parent c4c91412d1
commit 126c38a1d9
2 changed files with 659 additions and 0 deletions

View File

@@ -0,0 +1,242 @@
#pragma once
#include "IR.h"
#include "Pass.h"
#include <map>
#include <set>
#include <vector>
#include <memory>
#include <algorithm>
#include <unordered_set>
namespace sysy {
// 前向声明
class CallGraphAnalysisResult;
/**
* @brief 调用图节点信息
* 存储单个函数在调用图中的信息
*/
struct CallGraphNode {
Function* function; // 关联的函数
std::set<Function*> callers; // 调用此函数的函数集合
std::set<Function*> callees; // 此函数调用的函数集合
// 递归信息
bool isRecursive; // 是否参与递归调用
bool isSelfRecursive; // 是否自递归
int recursiveDepth; // 递归深度(-1表示无限递归)
// 调用统计
size_t totalCallers; // 调用者总数
size_t totalCallees; // 被调用函数总数
size_t callSiteCount; // 调用点总数
CallGraphNode(Function* f) : function(f), isRecursive(false),
isSelfRecursive(false), recursiveDepth(0), totalCallers(0),
totalCallees(0), callSiteCount(0) {}
};
/**
* @brief 调用图分析结果类
* 包含整个模块的调用图信息和查询接口
*/
class CallGraphAnalysisResult : public AnalysisResultBase {
public:
CallGraphAnalysisResult(Module* M) : AssociatedModule(M) {}
~CallGraphAnalysisResult() override = default;
// ========== 基础查询接口 ==========
/**
* 获取函数的调用图节点
*/
const CallGraphNode* getNode(Function* F) const {
auto it = nodes.find(F);
return (it != nodes.end()) ? it->second.get() : nullptr;
}
/**
* 获取函数的调用图节点非const版本
*/
CallGraphNode* getMutableNode(Function* F) {
auto it = nodes.find(F);
return (it != nodes.end()) ? it->second.get() : nullptr;
}
/**
* 获取所有函数节点
*/
const std::map<Function*, std::unique_ptr<CallGraphNode>>& getAllNodes() const {
return nodes;
}
/**
* 检查函数是否存在于调用图中
*/
bool hasFunction(Function* F) const {
return nodes.find(F) != nodes.end();
}
// ========== 调用关系查询 ==========
/**
* 检查是否存在从caller到callee的调用
*/
bool hasCallEdge(Function* caller, Function* callee) const {
auto node = getNode(caller);
return node && node->callees.count(callee) > 0;
}
/**
* 获取函数的所有调用者
*/
std::vector<Function*> getCallers(Function* F) const {
auto node = getNode(F);
if (!node) return {};
return std::vector<Function*>(node->callers.begin(), node->callers.end());
}
/**
* 获取函数的所有被调用函数
*/
std::vector<Function*> getCallees(Function* F) const {
auto node = getNode(F);
if (!node) return {};
return std::vector<Function*>(node->callees.begin(), node->callees.end());
}
// ========== 递归分析查询 ==========
/**
* 检查函数是否参与递归调用
*/
bool isRecursive(Function* F) const {
auto node = getNode(F);
return node && node->isRecursive;
}
/**
* 检查函数是否自递归
*/
bool isSelfRecursive(Function* F) const {
auto node = getNode(F);
return node && node->isSelfRecursive;
}
/**
* 获取递归深度
*/
int getRecursiveDepth(Function* F) const {
auto node = getNode(F);
return node ? node->recursiveDepth : 0;
}
// ========== 拓扑排序和SCC ==========
/**
* 获取函数的拓扑排序结果
* 保证被调用函数在调用函数之前
*/
const std::vector<Function*>& getTopologicalOrder() const {
return topologicalOrder;
}
/**
* 获取强连通分量列表
* 每个SCC表示一个递归函数群
*/
const std::vector<std::vector<Function*>>& getStronglyConnectedComponents() const {
return sccs;
}
/**
* 获取函数所在的SCC索引
*/
int getSCCIndex(Function* F) const {
auto it = functionToSCC.find(F);
return (it != functionToSCC.end()) ? it->second : -1;
}
// ========== 统计信息 ==========
struct Statistics {
size_t totalFunctions;
size_t totalCallEdges;
size_t recursiveFunctions;
size_t selfRecursiveFunctions;
size_t stronglyConnectedComponents;
size_t maxSCCSize;
double avgCallersPerFunction;
double avgCalleesPerFunction;
};
Statistics getStatistics() const;
/**
* 打印调用图分析结果
*/
void print() const;
// ========== 内部构建接口 ==========
void addNode(Function* F);
void addCallEdge(Function* caller, Function* callee);
void computeTopologicalOrder();
void computeStronglyConnectedComponents();
void analyzeRecursion();
private:
Module* AssociatedModule; // 关联的模块
std::map<Function*, std::unique_ptr<CallGraphNode>> nodes; // 调用图节点
std::vector<Function*> topologicalOrder; // 拓扑排序结果
std::vector<std::vector<Function*>> sccs; // 强连通分量
std::map<Function*, int> functionToSCC; // 函数到SCC的映射
// 内部辅助方法
void dfsTopological(Function* F, std::unordered_set<Function*>& visited,
std::vector<Function*>& result);
void tarjanSCC();
void tarjanDFS(Function* F, int& index, std::vector<int>& indices,
std::vector<int>& lowlinks, std::vector<Function*>& stack,
std::unordered_set<Function*>& onStack);
};
/**
* @brief SysY调用图分析Pass
* Module级别的分析Pass构建整个模块的函数调用图
*/
class CallGraphAnalysisPass : public AnalysisPass {
public:
// 唯一的 Pass ID
static void* ID;
CallGraphAnalysisPass() : AnalysisPass("CallGraphAnalysis", Pass::Granularity::Module) {}
// 实现 getPassID
void* getPassID() const override { return &ID; }
// 核心运行方法
bool runOnModule(Module* M, AnalysisManager& AM) override;
// 获取分析结果
std::unique_ptr<AnalysisResultBase> getResult() override { return std::move(CurrentResult); }
private:
std::unique_ptr<CallGraphAnalysisResult> CurrentResult; // 当前模块的分析结果
// ========== 主要分析流程 ==========
void buildCallGraph(Module* M); // 构建调用图
void scanFunctionCalls(Function* F); // 扫描函数的调用
void processCallInstruction(CallInst* call, Function* caller); // 处理调用指令
// ========== 辅助方法 ==========
bool isLibraryFunction(Function* F) const; // 判断是否为标准库函数
bool isIntrinsicFunction(Function* F) const; // 判断是否为内置函数
void printStatistics() const; // 打印统计信息
};
} // namespace sysy

View File

@@ -0,0 +1,417 @@
#include "CallGraphAnalysis.h"
#include "SysYIRPrinter.h"
#include <iostream>
#include <stack>
#include <unordered_set>
extern int DEBUG;
namespace sysy {
// 静态成员初始化
void* CallGraphAnalysisPass::ID = (void*)&CallGraphAnalysisPass::ID;
// ========== CallGraphAnalysisResult 实现 ==========
CallGraphAnalysisResult::Statistics CallGraphAnalysisResult::getStatistics() const {
Statistics stats = {};
stats.totalFunctions = nodes.size();
size_t totalCallEdges = 0;
size_t recursiveFunctions = 0;
size_t selfRecursiveFunctions = 0;
size_t totalCallers = 0;
size_t totalCallees = 0;
for (const auto& pair : nodes) {
const auto& node = pair.second;
totalCallEdges += node->callees.size();
totalCallers += node->callers.size();
totalCallees += node->callees.size();
if (node->isRecursive) recursiveFunctions++;
if (node->isSelfRecursive) selfRecursiveFunctions++;
}
stats.totalCallEdges = totalCallEdges;
stats.recursiveFunctions = recursiveFunctions;
stats.selfRecursiveFunctions = selfRecursiveFunctions;
stats.stronglyConnectedComponents = sccs.size();
// 计算最大SCC大小
size_t maxSCCSize = 0;
for (const auto& scc : sccs) {
maxSCCSize = std::max(maxSCCSize, scc.size());
}
stats.maxSCCSize = maxSCCSize;
// 计算平均值
if (stats.totalFunctions > 0) {
stats.avgCallersPerFunction = static_cast<double>(totalCallers) / stats.totalFunctions;
stats.avgCalleesPerFunction = static_cast<double>(totalCallees) / stats.totalFunctions;
}
return stats;
}
void CallGraphAnalysisResult::print() const {
std::cout << "---- Call Graph Analysis Results for Module ----\n";
// 打印基本统计信息
auto stats = getStatistics();
std::cout << " Statistics:\n";
std::cout << " Total Functions: " << stats.totalFunctions << "\n";
std::cout << " Total Call Edges: " << stats.totalCallEdges << "\n";
std::cout << " Recursive Functions: " << stats.recursiveFunctions << "\n";
std::cout << " Self-Recursive Functions: " << stats.selfRecursiveFunctions << "\n";
std::cout << " Strongly Connected Components: " << stats.stronglyConnectedComponents << "\n";
std::cout << " Max SCC Size: " << stats.maxSCCSize << "\n";
std::cout << " Avg Callers per Function: " << stats.avgCallersPerFunction << "\n";
std::cout << " Avg Callees per Function: " << stats.avgCalleesPerFunction << "\n";
// 打印拓扑排序结果
std::cout << " Topological Order (" << topologicalOrder.size() << "):\n";
for (size_t i = 0; i < topologicalOrder.size(); ++i) {
std::cout << " " << i << ": " << topologicalOrder[i]->getName() << "\n";
}
// 打印强连通分量
if (!sccs.empty()) {
std::cout << " Strongly Connected Components:\n";
for (size_t i = 0; i < sccs.size(); ++i) {
std::cout << " SCC " << i << " (size " << sccs[i].size() << "): ";
for (size_t j = 0; j < sccs[i].size(); ++j) {
if (j > 0) std::cout << ", ";
std::cout << sccs[i][j]->getName();
}
std::cout << "\n";
}
}
// 打印每个函数的详细信息
std::cout << " Function Details:\n";
for (const auto& pair : nodes) {
const auto& node = pair.second;
std::cout << " Function: " << node->function->getName();
if (node->isRecursive) {
std::cout << " (Recursive";
if (node->isSelfRecursive) std::cout << ", Self";
if (node->recursiveDepth >= 0) std::cout << ", Depth=" << node->recursiveDepth;
std::cout << ")";
}
std::cout << "\n";
if (!node->callers.empty()) {
std::cout << " Callers (" << node->callers.size() << "): ";
bool first = true;
for (Function* caller : node->callers) {
if (!first) std::cout << ", ";
std::cout << caller->getName();
first = false;
}
std::cout << "\n";
}
if (!node->callees.empty()) {
std::cout << " Callees (" << node->callees.size() << "): ";
bool first = true;
for (Function* callee : node->callees) {
if (!first) std::cout << ", ";
std::cout << callee->getName();
first = false;
}
std::cout << "\n";
}
}
std::cout << "--------------------------------------------------\n";
}
void CallGraphAnalysisResult::addNode(Function* F) {
if (nodes.find(F) == nodes.end()) {
nodes[F] = std::make_unique<CallGraphNode>(F);
}
}
void CallGraphAnalysisResult::addCallEdge(Function* caller, Function* callee) {
// 确保两个函数都有对应的节点
addNode(caller);
addNode(callee);
// 添加调用边
nodes[caller]->callees.insert(callee);
nodes[callee]->callers.insert(caller);
// 更新统计信息
nodes[caller]->totalCallees = nodes[caller]->callees.size();
nodes[callee]->totalCallers = nodes[callee]->callers.size();
// 检查自递归
if (caller == callee) {
nodes[caller]->isSelfRecursive = true;
nodes[caller]->isRecursive = true;
}
}
void CallGraphAnalysisResult::computeTopologicalOrder() {
topologicalOrder.clear();
std::unordered_set<Function*> visited;
// 对每个未访问的函数进行DFS
for (const auto& pair : nodes) {
Function* F = pair.first;
if (visited.find(F) == visited.end()) {
dfsTopological(F, visited, topologicalOrder);
}
}
// 反转结果(因为我们在后序遍历中添加)
std::reverse(topologicalOrder.begin(), topologicalOrder.end());
}
void CallGraphAnalysisResult::dfsTopological(Function* F, std::unordered_set<Function*>& visited,
std::vector<Function*>& result) {
visited.insert(F);
auto node = getNode(F);
if (node) {
// 先访问所有被调用的函数
for (Function* callee : node->callees) {
if (visited.find(callee) == visited.end()) {
dfsTopological(callee, visited, result);
}
}
}
// 后序遍历:访问完所有子节点后添加当前节点
result.push_back(F);
}
void CallGraphAnalysisResult::computeStronglyConnectedComponents() {
tarjanSCC();
// 为每个函数设置其所属的SCC
functionToSCC.clear();
for (size_t i = 0; i < sccs.size(); ++i) {
for (Function* F : sccs[i]) {
functionToSCC[F] = static_cast<int>(i);
}
}
}
void CallGraphAnalysisResult::tarjanSCC() {
sccs.clear();
std::vector<int> indices(nodes.size(), -1);
std::vector<int> lowlinks(nodes.size(), -1);
std::vector<Function*> stack;
std::unordered_set<Function*> onStack;
int index = 0;
// 为函数分配索引
std::map<Function*, int> functionIndex;
int idx = 0;
for (const auto& pair : nodes) {
functionIndex[pair.first] = idx++;
}
// 对每个未访问的函数运行Tarjan算法
for (const auto& pair : nodes) {
Function* F = pair.first;
int fIdx = functionIndex[F];
if (indices[fIdx] == -1) {
tarjanDFS(F, index, indices, lowlinks, stack, onStack);
}
}
}
void CallGraphAnalysisResult::tarjanDFS(Function* F, int& index, std::vector<int>& indices,
std::vector<int>& lowlinks, std::vector<Function*>& stack,
std::unordered_set<Function*>& onStack) {
// 这里需要函数到索引的映射,简化实现
// 在实际实现中应该维护一个全局的函数索引映射
static std::map<Function*, int> functionIndex;
static int nextIndex = 0;
if (functionIndex.find(F) == functionIndex.end()) {
functionIndex[F] = nextIndex++;
}
int fIdx = functionIndex[F];
// 确保向量足够大
if (fIdx >= static_cast<int>(indices.size())) {
indices.resize(fIdx + 1, -1);
lowlinks.resize(fIdx + 1, -1);
}
indices[fIdx] = index;
lowlinks[fIdx] = index;
index++;
stack.push_back(F);
onStack.insert(F);
auto node = getNode(F);
if (node) {
for (Function* callee : node->callees) {
int calleeIdx = functionIndex[callee];
// 确保向量足够大
if (calleeIdx >= static_cast<int>(indices.size())) {
indices.resize(calleeIdx + 1, -1);
lowlinks.resize(calleeIdx + 1, -1);
}
if (indices[calleeIdx] == -1) {
// 递归访问
tarjanDFS(callee, index, indices, lowlinks, stack, onStack);
lowlinks[fIdx] = std::min(lowlinks[fIdx], lowlinks[calleeIdx]);
} else if (onStack.find(callee) != onStack.end()) {
// 后向边
lowlinks[fIdx] = std::min(lowlinks[fIdx], indices[calleeIdx]);
}
}
}
// 如果F是SCC的根
if (lowlinks[fIdx] == indices[fIdx]) {
std::vector<Function*> scc;
Function* w;
do {
w = stack.back();
stack.pop_back();
onStack.erase(w);
scc.push_back(w);
} while (w != F);
sccs.push_back(std::move(scc));
}
}
void CallGraphAnalysisResult::analyzeRecursion() {
// 基于SCC分析递归
for (const auto& scc : sccs) {
if (scc.size() > 1) {
// 多函数的SCC标记为相互递归
for (Function* F : scc) {
auto* node = getMutableNode(F);
if (node) {
node->isRecursive = true;
node->recursiveDepth = -1; // 相互递归,深度未定义
}
}
} else if (scc.size() == 1) {
// 单函数SCC检查是否自递归
Function* F = scc[0];
auto* node = getMutableNode(F);
if (node && node->callees.count(F) > 0) {
node->isSelfRecursive = true;
node->isRecursive = true;
node->recursiveDepth = -1; // 简化:不计算递归深度
}
}
}
}
// ========== CallGraphAnalysisPass 实现 ==========
bool CallGraphAnalysisPass::runOnModule(Module* M, AnalysisManager& AM) {
if (DEBUG) {
std::cout << "Running Call Graph Analysis on module\n";
}
// 创建分析结果
CurrentResult = std::make_unique<CallGraphAnalysisResult>(M);
// 执行主要分析步骤
buildCallGraph(M);
CurrentResult->computeTopologicalOrder();
CurrentResult->computeStronglyConnectedComponents();
CurrentResult->analyzeRecursion();
if (DEBUG) {
CurrentResult->print();
}
return false; // 分析遍不修改IR
}
void CallGraphAnalysisPass::buildCallGraph(Module* M) {
// 1. 为所有函数创建节点(包括声明但未定义的函数)
for (auto& pair : M->getFunctions()) {
Function* F = pair.second.get();
if (!isLibraryFunction(F) && !isIntrinsicFunction(F)) {
CurrentResult->addNode(F);
}
}
// 2. 扫描所有函数的调用关系
for (auto& pair : M->getFunctions()) {
Function* F = pair.second.get();
if (!isLibraryFunction(F) && !isIntrinsicFunction(F)) {
scanFunctionCalls(F);
}
}
}
void CallGraphAnalysisPass::scanFunctionCalls(Function* F) {
// 遍历函数中的所有基本块和指令
for (auto& BB : F->getBasicBlocks_NoRange()) {
for (auto& I : BB->getInstructions()) {
if (CallInst* call = dynamic_cast<CallInst*>(I.get())) {
processCallInstruction(call, F);
}
}
}
}
void CallGraphAnalysisPass::processCallInstruction(CallInst* call, Function* caller) {
Function* callee = call->getCallee();
if (!callee) {
// 间接调用,无法静态确定目标函数
return;
}
if (isLibraryFunction(callee) || isIntrinsicFunction(callee)) {
// 跳过标准库函数和内置函数
return;
}
// 添加调用边
CurrentResult->addCallEdge(caller, callee);
// 更新调用点统计
auto* node = CurrentResult->getMutableNode(caller);
if (node) {
node->callSiteCount++;
}
}
bool CallGraphAnalysisPass::isLibraryFunction(Function* F) const {
std::string name = F->getName();
// SysY标准库函数
return name == "getint" || name == "getch" || name == "getfloat" ||
name == "getarray" || name == "getfarray" ||
name == "putint" || name == "putch" || name == "putfloat" ||
name == "putarray" || name == "putfarray" ||
name == "_sysy_starttime" || name == "_sysy_stoptime";
}
bool CallGraphAnalysisPass::isIntrinsicFunction(Function* F) const {
std::string name = F->getName();
// 编译器内置函数(后续可以增加某些内置函数)
return name.substr(0, 5) == "llvm." || name.substr(0, 5) == "sysy.";
}
void CallGraphAnalysisPass::printStatistics() const {
if (CurrentResult) {
CurrentResult->print();
}
}
} // namespace sysy