[midend]重构了src目录
This commit is contained in:
123
src/backend/RISCv64/Handler/CalleeSavedHandler.cpp
Normal file
123
src/backend/RISCv64/Handler/CalleeSavedHandler.cpp
Normal file
@@ -0,0 +1,123 @@
|
||||
#include "CalleeSavedHandler.h"
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char CalleeSavedHandler::ID = 0;
|
||||
|
||||
bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void CalleeSavedHandler::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
// 此 Pass 负责分析、分配栈空间并插入 callee-saved 寄存器的保存/恢复指令。
|
||||
// 它通过与 FrameInfo 协作,确保为 callee-saved 寄存器分配的空间与局部变量/溢出槽的空间不冲突。
|
||||
// 这样做可以使生成的 sd/ld 指令能被后续的优化 Pass (如 PostRA-Scheduler) 处理。
|
||||
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
std::set<PhysicalReg> used_callee_saved;
|
||||
|
||||
// 1. 扫描所有指令,找出被使用的s寄存器 (s1-s11)
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
for (auto& op : instr->getOperands()) {
|
||||
auto check_and_insert_reg = [&](RegOperand* reg_op) {
|
||||
if (!reg_op->isVirtual()) {
|
||||
PhysicalReg preg = reg_op->getPReg();
|
||||
if (preg >= PhysicalReg::S1 && preg <= PhysicalReg::S11) {
|
||||
used_callee_saved.insert(preg);
|
||||
}
|
||||
}
|
||||
};
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
check_and_insert_reg(static_cast<RegOperand*>(op.get()));
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
check_and_insert_reg(static_cast<MemOperand*>(op.get())->getBase());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (used_callee_saved.empty()) {
|
||||
frame_info.callee_saved_size = 0; // 确保大小被初始化
|
||||
return; // 无需操作
|
||||
}
|
||||
|
||||
// 2. 计算为 callee-saved 寄存器分配的栈空间
|
||||
// 这里的关键是,偏移的基准点要在局部变量和溢出槽之下。
|
||||
int callee_saved_size = used_callee_saved.size() * 8;
|
||||
frame_info.callee_saved_size = callee_saved_size; // 将大小存入 FrameInfo
|
||||
|
||||
// 3. 计算无冲突的栈偏移
|
||||
// 栈向下增长,所以偏移是负数。
|
||||
// ra/s0 占用 -8 和 -16。局部变量和溢出区在它们之下。callee-saved 区在更下方。
|
||||
// 我们使用相对于 s0 的偏移。s0 将指向栈顶 (sp + total_size)。
|
||||
int base_offset = -16 - frame_info.locals_size - frame_info.spill_size;
|
||||
|
||||
// 为了栈帧布局确定性,对寄存器进行排序
|
||||
std::vector<PhysicalReg> sorted_regs(used_callee_saved.begin(), used_callee_saved.end());
|
||||
std::sort(sorted_regs.begin(), sorted_regs.end());
|
||||
|
||||
// 4. 在函数序言插入保存指令
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
auto prologue_end = entry_instrs.begin();
|
||||
|
||||
// 找到序言结束的位置(通常是addi s0, sp, size之后,但为了让优化器看到,我们插在更前面)
|
||||
// 合理的位置是在 IR 指令开始之前,即在任何非序言指令(如第一个标签)之前。
|
||||
// 为简单起见,我们直接插入到块的开头,后续重排 pass 会处理。
|
||||
// (更优的实现会寻找一个特定的插入点)
|
||||
|
||||
int current_offset = base_offset;
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
auto sd = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
sd->addOperand(std::make_unique<RegOperand>(reg));
|
||||
sd->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针 s0
|
||||
std::make_unique<ImmOperand>(current_offset)
|
||||
));
|
||||
// 从头部插入,但要放在函数标签之后
|
||||
entry_instrs.insert(entry_instrs.begin() + 1, std::move(sd));
|
||||
current_offset -= 8;
|
||||
}
|
||||
|
||||
// 5. 在函数结尾(ret之前)插入恢复指令,使用反向遍历来避免迭代器失效
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
// 使用手动控制的反向循环
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
// 1. 创建一个临时vector来存储所有需要插入的恢复指令
|
||||
std::vector<std::unique_ptr<MachineInstr>> restore_instrs;
|
||||
|
||||
int current_offset_load = base_offset;
|
||||
// 以相同的顺序(例如 s1, s2, ...)创建恢复指令
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
auto ld = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
ld->addOperand(std::make_unique<RegOperand>(reg));
|
||||
ld->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(current_offset_load)
|
||||
));
|
||||
restore_instrs.push_back(std::move(ld));
|
||||
current_offset_load -= 8;
|
||||
}
|
||||
|
||||
// 2. 使用 make_move_iterator 一次性将所有恢复指令插入到 RET 指令之前
|
||||
// 这可以高效地转移指令的所有权,并且只让迭代器失效一次。
|
||||
if (!restore_instrs.empty()) {
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(restore_instrs.begin()),
|
||||
std::make_move_iterator(restore_instrs.end())
|
||||
);
|
||||
}
|
||||
|
||||
// 找到了RET并处理完毕后,就可以跳出内层循环,继续寻找下一个基本块
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
168
src/backend/RISCv64/Handler/LegalizeImmediates.cpp
Normal file
168
src/backend/RISCv64/Handler/LegalizeImmediates.cpp
Normal file
@@ -0,0 +1,168 @@
|
||||
#include "LegalizeImmediates.h"
|
||||
#include "RISCv64ISel.h" // 需要包含它以调用 getNewVReg()
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// 声明外部调试控制变量
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char LegalizeImmediatesPass::ID = 0;
|
||||
|
||||
// 辅助函数:检查一个立即数是否在RISC-V的12位有符号范围内
|
||||
static bool isLegalImmediate(int64_t imm) {
|
||||
return imm >= -2048 && imm <= 2047;
|
||||
}
|
||||
|
||||
void LegalizeImmediatesPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
if (DEBUG) {
|
||||
std::cerr << "===== Running Legalize Immediates Pass on function: " << mfunc->getName() << " =====\n";
|
||||
}
|
||||
|
||||
// 定义我们保留的、用于暂存的物理寄存器
|
||||
const PhysicalReg TEMP_REG = PhysicalReg::T5;
|
||||
|
||||
// 创建一个临时的AsmPrinter用于打印指令,方便调试
|
||||
RISCv64AsmPrinter temp_printer(mfunc);
|
||||
if (DEEPDEBUG) {
|
||||
temp_printer.setStream(std::cerr);
|
||||
}
|
||||
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << "--- Processing Basic Block: " << mbb->getName() << " ---\n";
|
||||
}
|
||||
// 创建一个新的指令列表,用于存放合法化后的指令
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " Checking: ";
|
||||
// 打印指令时末尾会带换行符,所以这里不用 std::endl
|
||||
temp_printer.printInstruction(instr_ptr.get(), true);
|
||||
}
|
||||
|
||||
bool legalized = false; // 标记当前指令是否已被展开处理
|
||||
|
||||
switch (instr_ptr->getOpcode()) {
|
||||
case RVOpcodes::ADDI:
|
||||
case RVOpcodes::ADDIW: {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
auto imm_op = static_cast<ImmOperand*>(operands.back().get());
|
||||
|
||||
if (!isLegalImmediate(imm_op->getValue())) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " >> ILLEGAL immediate (" << imm_op->getValue() << "). Expanding...\n";
|
||||
}
|
||||
// 立即数超出范围,需要展开
|
||||
auto rd_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[0].get()));
|
||||
auto rs1_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[1].get()));
|
||||
|
||||
// 1. li t5, immediate
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
li->addOperand(std::make_unique<ImmOperand>(imm_op->getValue()));
|
||||
|
||||
// 2. add/addw rd, rs1, t5
|
||||
auto new_op = (instr_ptr->getOpcode() == RVOpcodes::ADDI) ? RVOpcodes::ADD : RVOpcodes::ADDW;
|
||||
auto add = std::make_unique<MachineInstr>(new_op);
|
||||
add->addOperand(std::move(rd_op));
|
||||
add->addOperand(std::move(rs1_op));
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " New sequence:\n ";
|
||||
temp_printer.printInstruction(li.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(add.get(), true);
|
||||
}
|
||||
|
||||
new_instructions.push_back(std::move(li));
|
||||
new_instructions.push_back(std::move(add));
|
||||
|
||||
legalized = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// 处理所有内存加载/存储指令
|
||||
case RVOpcodes::LB: case RVOpcodes::LH: case RVOpcodes::LW: case RVOpcodes::LD:
|
||||
case RVOpcodes::LBU: case RVOpcodes::LHU: case RVOpcodes::LWU:
|
||||
case RVOpcodes::SB: case RVOpcodes::SH: case RVOpcodes::SW: case RVOpcodes::SD: {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
auto mem_op = static_cast<MemOperand*>(operands.back().get());
|
||||
auto offset_op = mem_op->getOffset();
|
||||
|
||||
if (!isLegalImmediate(offset_op->getValue())) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " >> ILLEGAL immediate offset (" << offset_op->getValue() << "). Expanding...\n";
|
||||
}
|
||||
// 偏移量超出范围,需要展开
|
||||
auto data_reg_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[0].get()));
|
||||
auto base_reg_op = std::make_unique<RegOperand>(*mem_op->getBase());
|
||||
|
||||
// 1. li t5, offset
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
li->addOperand(std::make_unique<ImmOperand>(offset_op->getValue()));
|
||||
|
||||
// 2. add t5, base_reg, t5 (计算最终地址,结果也放在t5)
|
||||
auto add = std::make_unique<MachineInstr>(RVOpcodes::ADD);
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
add->addOperand(std::move(base_reg_op));
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
|
||||
// 3. lw/sw data_reg, 0(t5)
|
||||
auto mem_instr = std::make_unique<MachineInstr>(instr_ptr->getOpcode());
|
||||
mem_instr->addOperand(std::move(data_reg_op));
|
||||
mem_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(TEMP_REG),
|
||||
std::make_unique<ImmOperand>(0)
|
||||
));
|
||||
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " New sequence:\n ";
|
||||
temp_printer.printInstruction(li.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(add.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(mem_instr.get(), true);
|
||||
}
|
||||
|
||||
new_instructions.push_back(std::move(li));
|
||||
new_instructions.push_back(std::move(add));
|
||||
new_instructions.push_back(std::move(mem_instr));
|
||||
|
||||
legalized = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
// 其他指令不需要处理
|
||||
break;
|
||||
}
|
||||
|
||||
if (!legalized) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " -- Immediate is legal. Skipping.\n";
|
||||
}
|
||||
// 如果当前指令不需要合法化,直接将其移动到新列表中
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
}
|
||||
|
||||
// 用新的、已合法化的指令列表替换旧的列表
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "===== Finished Legalize Immediates Pass =====\n\n";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
118
src/backend/RISCv64/Handler/PrologueEpilogueInsertion.cpp
Normal file
118
src/backend/RISCv64/Handler/PrologueEpilogueInsertion.cpp
Normal file
@@ -0,0 +1,118 @@
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PrologueEpilogueInsertionPass::ID = 0;
|
||||
|
||||
void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
|
||||
// 完全遵循 AsmPrinter 中的计算逻辑
|
||||
int total_stack_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size +
|
||||
16; // 为 ra 和 s0 固定的16字节
|
||||
|
||||
int aligned_stack_size = (total_stack_size + 15) & ~15;
|
||||
frame_info.total_size = aligned_stack_size;
|
||||
|
||||
// 只有在需要分配栈空间时才生成指令
|
||||
if (aligned_stack_size > 0) {
|
||||
// --- 1. 插入序言 ---
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> prologue_instrs;
|
||||
|
||||
// 严格按照 AsmPrinter 的打印顺序来创建和组织指令
|
||||
// 1. addi sp, sp, -aligned_stack_size
|
||||
auto alloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<ImmOperand>(-aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(alloc_stack));
|
||||
|
||||
// 2. sd ra, (aligned_stack_size - 8)(sp)
|
||||
auto save_ra = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
save_ra->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_ra));
|
||||
|
||||
// 3. sd s0, (aligned_stack_size - 16)(sp)
|
||||
auto save_fp = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
save_fp->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 16)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_fp));
|
||||
|
||||
// 4. addi s0, sp, aligned_stack_size
|
||||
auto set_fp = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
set_fp->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(set_fp));
|
||||
|
||||
// 确定插入点(在函数名标签之后)
|
||||
auto insert_pos = entry_instrs.begin();
|
||||
// [重要] 这里我们不再需要跳过LABEL,因为AsmPrinter将不再打印函数名标签
|
||||
// 第一个基本块的标签就是函数入口
|
||||
|
||||
// 一次性将所有序言指令插入
|
||||
if (!prologue_instrs.empty()) {
|
||||
entry_instrs.insert(insert_pos,
|
||||
std::make_move_iterator(prologue_instrs.begin()),
|
||||
std::make_move_iterator(prologue_instrs.end()));
|
||||
}
|
||||
|
||||
// --- 2. 插入尾声 ---
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> epilogue_instrs;
|
||||
|
||||
// 同样严格按照 AsmPrinter 的打印顺序
|
||||
// 1. ld ra, (aligned_stack_size - 8)(sp)
|
||||
auto restore_ra = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
restore_ra->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_ra));
|
||||
|
||||
// 2. ld s0, (aligned_stack_size - 16)(sp)
|
||||
auto restore_fp = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
restore_fp->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 16)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_fp));
|
||||
|
||||
// 3. addi sp, sp, aligned_stack_size
|
||||
auto dealloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
epilogue_instrs.push_back(std::move(dealloc_stack));
|
||||
|
||||
if (!epilogue_instrs.empty()) {
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(epilogue_instrs.begin()),
|
||||
std::make_move_iterator(epilogue_instrs.end()));
|
||||
}
|
||||
// 处理完一个基本块中的RET后,迭代器已失效,需跳出
|
||||
goto next_block;
|
||||
}
|
||||
}
|
||||
next_block:;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
Reference in New Issue
Block a user