Files
mckernel/kernel/user_exp_rcv.c
Dominique Martinet 0f8f88ca46 hfi1/user_exp_rcv/invalid: Remove function
user_exp_rcv_invalid is only used together with the mmu cache
(its purpose is the delayed freeing of tids that were invalidated in cache)

Since we do not use that cache, the function can go
2018-06-13 00:31:36 +09:00

431 lines
13 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <hfi1/ihk_hfi1_common.h>
#include <hfi1/common.h>
#include <hfi1/hfi.h>
#include <hfi1/chip.h>
#include <hfi1/user_exp_rcv.h>
static int program_rcvarray(struct hfi1_filedata *, uintptr_t, u16, struct tid_group *,
u32 *);
static int set_rcvarray_entry(struct hfi1_filedata *, uintptr_t,
u32, struct tid_group *,
u16);
static int unprogram_rcvarray(struct hfi1_filedata *, u32, struct tid_group **);
static void clear_tid_node(struct hfi1_filedata *, struct tid_rb_node *);
struct tid_rb_node {
uintptr_t phys;
u32 len;
u32 rcventry;
struct tid_group *grp;
};
/*
* RcvArray entry allocation for Expected Receives is done by the
* following algorithm:
*
* The context keeps 3 lists of groups of RcvArray entries:
* 1. List of empty groups - tid_group_list
* This list is created during user context creation and
* contains elements which describe sets (of 8) of empty
* RcvArray entries.
* 2. List of partially used groups - tid_used_list
* This list contains sets of RcvArray entries which are
* not completely used up. Another mapping request could
* use some of all of the remaining entries.
* 3. List of full groups - tid_full_list
* This is the list where sets that are completely used
* up go.
*
* An attempt to optimize the usage of RcvArray entries is
* made by finding all sets of physically contiguous pages in a
* user's buffer.
* These physically contiguous sets are further split into
* sizes supported by the receive engine of the HFI. The
* resulting sets of pages are stored in struct tid_pageset,
* which describes the sets as:
* * .count - number of pages in this set
* * .idx - starting index into struct page ** array
* of this set
*
* From this point on, the algorithm deals with the page sets
* described above. The number of pagesets is divided by the
* RcvArray group size to produce the number of full groups
* needed.
*
* Groups from the 3 lists are manipulated using the following
* rules:
* 1. For each set of 8 pagesets, a complete group from
* tid_group_list is taken, programmed, and moved to
* the tid_full_list list.
* 2. For all remaining pagesets:
* 2.1 If the tid_used_list is empty and the tid_group_list
* is empty, stop processing pageset and return only
* what has been programmed up to this point.
* 2.2 If the tid_used_list is empty and the tid_group_list
* is not empty, move a group from tid_group_list to
* tid_used_list.
* 2.3 For each group is tid_used_group, program as much as
* can fit into the group. If the group becomes fully
* used, move it to tid_full_list.
*/
int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo)
{
int ret = -EFAULT;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
uintptr_t vaddr = tinfo->vaddr;
u32 tid[20]; /* at most 20 requests with this algorithm */
u16 tididx = 0;
s16 order;
u32 npages;
struct process_vm *vm = cpu_local_var(current)->vm;
size_t base_pgsize;
pte_t *ptep;
u64 phys;
if (!tinfo->length)
return -EINVAL;
if (tinfo->length / PAGE_SIZE > uctxt->expected_count) {
kprintf("Expected buffer too big\n");
return -EINVAL;
}
/* Verify that access is OK for the user buffer */
// TODO: iterate over vm memory ranges for write access
// return -EFAULT;
/* Simplified design: vaddr to vaddr + tinfo->length is contiguous
* for us, but program_rcvarray only deals with powers of two
* -> we need as many requests as there are bits set in length
*
* Note that we only work with multiples of 4k, so round up and shift
*/
npages = (tinfo->length + 4095) >> 12;
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
(void*)vaddr, 0, 0, &base_pgsize, 0);
if (unlikely(!ptep || !pte_is_present(ptep))) {
kprintf("%s: ERRROR: no valid PTE for 0x%lx\n",
__FUNCTION__, vaddr);
return -EFAULT;
}
phys = pte_get_phys(ptep);
for (order = 19; order >= 0; order--)
{
struct tid_group *grp;
if (!(npages & (1 << order)))
continue;
spin_lock(&fd->tid_lock);
if (!uctxt->tid_used_list.count) {
if (!uctxt->tid_group_list.count) {
goto unlock;
}
grp = tid_group_pop(&uctxt->tid_group_list);
} else {
grp = tid_group_pop(&uctxt->tid_used_list);
}
ret = program_rcvarray(fd, phys, order, grp, tid + (tididx++));
if (ret < 0) {
hfi1_cdbg(TID,
"Failed to program RcvArray entries %d",
ret);
ret = -EFAULT;
} else if (WARN_ON(ret == 0)) {
ret = -EFAULT;
}
if (grp->used == grp->size)
tid_group_add_tail(grp, &uctxt->tid_full_list);
else
tid_group_add_tail(grp, &uctxt->tid_used_list);
unlock:
spin_unlock(&fd->tid_lock);
phys += 1 << (order+12);
if (ret < 0)
break;
}
if (ret > 0) {
// TODO: can we use spin_lock with kernel locks?
spin_lock(&fd->tid_lock);
fd->tid_used += tididx;
spin_unlock(&fd->tid_lock);
tinfo->tidcnt = tididx;
if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
tid, sizeof(tid)*tididx)) {
/*
* On failure to copy to the user level, we need to undo
* everything done so far so we don't leak resources.
*/
tinfo->tidlist = (unsigned long)&tid;
hfi1_user_exp_rcv_clear(fd, tinfo);
tinfo->tidlist = 0;
ret = -EFAULT;
}
}
return ret > 0 ? 0 : ret;
}
int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo)
{
int ret = 0;
u32 *tidinfo;
unsigned tididx;
tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
if (!tidinfo)
return -ENOMEM;
if (copy_from_user(tidinfo, (void __user *)(unsigned long)
tinfo->tidlist, sizeof(tidinfo[0]) *
tinfo->tidcnt)) {
ret = -EFAULT;
goto done;
}
spin_lock(&fd->tid_lock);
for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
if (ret) {
hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
ret);
break;
}
}
fd->tid_used -= tididx;
spin_unlock(&fd->tid_lock);
tinfo->tidcnt = tididx;
done:
kfree(tidinfo);
return ret;
}
/**
* program_rcvarray() - program an RcvArray group with receive buffers
* @fd: file data
* @vaddr: starting user virtual address
* @grp: RcvArray group
* @sets: array of struct tid_pageset holding information on physically
* contiguous chunks from the user buffer
* @start: starting index into sets array
* @count: number of struct tid_pageset's to program
* @pages: an array of struct page * for the user buffer
* @ptid: information about the programmed RcvArray entries is to be encoded.
* @tididx: starting offset into tidlist
*
* This function will program up to 'count' number of RcvArray entries from the
* group 'grp'. To make best use of write-combining writes, the function will
* perform writes to the unused RcvArray entries which will be ignored by the
* HW. Each RcvArray entry will be programmed with a physically contiguous
* buffer chunk from the user's virtual buffer.
*
* Return:
* -EINVAL if the requested count is larger than the size of the group,
* -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
* number of RcvArray entries programmed.
*/
static int program_rcvarray(struct hfi1_filedata *fd, uintptr_t phys,
u16 order,
struct tid_group *grp,
u32 *ptid)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
u16 idx;
u32 tidinfo = 0, rcventry;
/* Find the first unused entry in the group */
for (idx = 0; idx < grp->size; idx++) {
if (!(grp->map & (1 << idx))) {
break;
}
}
int ret = 0;
/*
* If this entry in the group is used, move to the next one.
* If we go past the end of the group, exit the loop.
*/
rcv_array_wc_fill(dd, grp->base + idx);
rcventry = grp->base + idx;
ret = set_rcvarray_entry(fd, phys, rcventry, grp,
order);
if (ret)
return ret;
tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
EXP_TID_SET(LEN, 1 << order);
*ptid = tidinfo;
grp->used++;
grp->map |= 1 << idx++;
return 1;
}
static int set_rcvarray_entry(struct hfi1_filedata *fd, uintptr_t phys,
u32 rcventry, struct tid_group *grp,
u16 order)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
struct tid_rb_node *node;
/*
* Allocate the node first so we can handle a potential
* failure before we've programmed anything.
*/
node = kcalloc(1, sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
kprintf("Registering rcventry %d, phys 0x%p, len %u\n", rcventry, phys, 1 << (order+12));
node->phys = phys;
node->len = 1 << (order+12);
node->rcventry = rcventry;
node->grp = grp;
// TODO: check node->rcventry - uctxt->expected_base is within
// [0; uctxt->expected_count[ ?
fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, order+1);
#if 0
trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
node->mmu.addr, node->phys, phys);
#endif
return 0;
}
static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
struct tid_group **grp)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct tid_rb_node *node;
u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
if (tididx >= uctxt->expected_count) {
kprintf("Invalid RcvArray entry (%u) index for ctxt %u\n",
tididx, uctxt->ctxt);
return -EINVAL;
}
if (tidctrl == 0x3)
return -EINVAL;
rcventry = tididx + (tidctrl - 1);
node = fd->entry_to_rb[rcventry];
if (!node || node->rcventry != (uctxt->expected_base + rcventry))
return -EBADF;
if (grp)
*grp = node->grp;
kprintf("Clearing rcventry %d, phys 0x%p, len %u\n", node->rcventry,
node->phys, node->len);
fd->entry_to_rb[rcventry] = NULL;
clear_tid_node(fd, node);
return 0;
}
static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
#if 0
trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
node->npages, node->mmu.addr, node->phys,
node->dma_addr);
#endif
hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
/*
* Make sure device has seen the write before we unpin the
* pages.
*/
flush_wc();
#if 0
pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
PCI_DMA_FROMDEVICE);
hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
fd->tid_n_pinned -= node->npages;
#endif
node->grp->used--;
node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
if (node->grp->used == node->grp->size - 1)
tid_group_move(node->grp, &uctxt->tid_full_list,
&uctxt->tid_used_list);
else if (!node->grp->used)
tid_group_move(node->grp, &uctxt->tid_used_list,
&uctxt->tid_group_list);
kfree(node);
}