/* syscall.c COPYRIGHT FUJITSU LIMITED 2015-2017 */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern void ptrace_report_signal(struct thread *thread, int sig); extern void clear_single_step(struct thread *thread); void terminate(int, int); extern long do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact); long syscall(int num, ihk_mc_user_context_t *ctx); extern unsigned long do_fork(int, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); static void __check_signal(unsigned long rc, void *regs, int num, int irq_disabled); //#define DEBUG_PRINT_SC #ifdef DEBUG_PRINT_SC #define dkprintf kprintf #define ekprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0) #else #define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0) #define ekprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0) #endif #define NOT_IMPLEMENTED() do { kprintf("%s is not implemented\n", __func__); while(1);} while(0) #define BUG_ON(condition) do { if (condition) { kprintf("PANIC: %s: %s(line:%d)\n",\ __FILE__, __FUNCTION__, __LINE__); panic(""); } } while(0) uintptr_t debug_constants[] = { sizeof(struct cpu_local_var), offsetof(struct cpu_local_var, current), offsetof(struct cpu_local_var, runq), offsetof(struct cpu_local_var, status), offsetof(struct cpu_local_var, idle), offsetof(struct thread, ctx) + offsetof(struct thread_info, cpu_context), offsetof(struct thread, sched_list), offsetof(struct thread, proc), offsetof(struct thread, status), offsetof(struct process, pid), offsetof(struct thread, tid), -1, }; static ihk_spinlock_t cpuid_head_lock = SPIN_LOCK_UNLOCKED; static int cpuid_head = 1; extern int num_processors; int obtain_clone_cpuid(cpu_set_t *cpu_set) { int min_queue_len = -1; int i, min_cpu = -1; /* cpu_head lock */ ihk_mc_spinlock_lock_noirq(&cpuid_head_lock); /* Find the first allowed core with the shortest run queue */ for (i = 0; i < num_processors; cpuid_head++, i++) { struct cpu_local_var *v; unsigned long irqstate; /* cpuid_head over cpu_info->ncpus, cpuid_head = BSP reset. */ if (cpuid_head >= num_processors) { cpuid_head = 0; } if (!CPU_ISSET(cpuid_head, cpu_set)) continue; v = get_cpu_local_var(cpuid_head); irqstate = ihk_mc_spinlock_lock(&v->runq_lock); if (min_queue_len == -1 || v->runq_len < min_queue_len) { min_queue_len = v->runq_len; min_cpu = cpuid_head; } ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); if (min_queue_len == 0) { cpuid_head++; break; } } /* cpu_head unlock */ ihk_mc_spinlock_unlock_noirq(&cpuid_head_lock); if (min_cpu != -1) { if (get_cpu_local_var(min_cpu)->status != CPU_STATUS_RESERVED) get_cpu_local_var(min_cpu)->status = CPU_STATUS_RESERVED; } return min_cpu; } int arch_clear_host_user_space() { struct thread *th = cpu_local_var(current); /* XXX: might be unnecessary */ clear_host_pte(th->vm->region.user_start, (th->vm->region.user_end - th->vm->region.user_start)); return 0; } /* archtecture-depended syscall handlers */ extern unsigned long do_fork(int clone_flags, unsigned long newsp, unsigned long parent_tidptr, unsigned long child_tidptr, unsigned long tlsblock_base, unsigned long curpc, unsigned long cursp); SYSCALL_DECLARE(clone) { if ((int)ihk_mc_syscall_arg0(ctx) & CLONE_VFORK) { return do_fork(CLONE_VFORK|SIGCHLD, 0, 0, 0, 0, ihk_mc_syscall_pc(ctx), ihk_mc_syscall_sp(ctx)); } else { return do_fork((int)ihk_mc_syscall_arg0(ctx), /* clone_flags */ ihk_mc_syscall_arg1(ctx), /* newsp */ ihk_mc_syscall_arg2(ctx), /* parent_tidptr */ ihk_mc_syscall_arg4(ctx), /* child_tidptr (swap arg3) */ ihk_mc_syscall_arg3(ctx), /* tlsblock_base (swap arg4) */ ihk_mc_syscall_pc(ctx), /* curpc */ ihk_mc_syscall_sp(ctx)); /* cursp */ } } SYSCALL_DECLARE(rt_sigaction) { int sig = ihk_mc_syscall_arg0(ctx); const struct sigaction *act = (const struct sigaction *)ihk_mc_syscall_arg1(ctx); struct sigaction *oact = (struct sigaction *)ihk_mc_syscall_arg2(ctx); size_t sigsetsize = ihk_mc_syscall_arg3(ctx); struct k_sigaction new_sa, old_sa; int rc; if(sig == SIGKILL || sig == SIGSTOP || sig <= 0 || sig > SIGRTMAX) return -EINVAL; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if(act) if(copy_from_user(&new_sa.sa, act, sizeof new_sa.sa)){ goto fault; } rc = do_sigaction(sig, act? &new_sa: NULL, oact? &old_sa: NULL); if(rc == 0 && oact) if(copy_to_user(oact, &old_sa.sa, sizeof old_sa.sa)){ goto fault; } return rc; fault: return -EFAULT; } SYSCALL_DECLARE(prctl) { int option = (int)ihk_mc_syscall_arg0(ctx); long error; switch (option) { case PR_SVE_SET_VL: error = SVE_SET_VL(cpu_local_var(current), ihk_mc_syscall_arg1(ctx), ihk_mc_syscall_arg2(ctx)); break; case PR_SVE_GET_VL: error = SVE_GET_VL(cpu_local_var(current)); break; default: error = syscall_generic_forwarding(__NR_prctl, ctx); break; } return error; } /* * @ref.impl linux-linaro/src/linux-linaro/arch/arm64/kernel/signal.c::struct rt_sigframe * @ref.impl mckernel/arch/x86/kernel/syscall.c::struct sigsp */ struct sigsp { unsigned long sigrc; int syscallno; int restart; siginfo_t info; struct ucontext uc; uint64_t fp; uint64_t lr; }; struct rt_sigframe_user_layout { struct sigsp __user *usigframe; struct sigsp *ksigframe; unsigned long size; /* size of allocated sigframe data */ unsigned long limit; /* largest allowed size */ unsigned long fpsimd_offset; unsigned long esr_offset; unsigned long sve_offset; unsigned long extra_offset; unsigned long end_offset; }; static void preserve_fpsimd_context(struct fpsimd_context *ctx) { struct fpsimd_state fpsimd; /* dump the hardware registers to the fpsimd_state structure */ fpsimd_save_state(&fpsimd); /* copy the FP and status/control registers */ memcpy(ctx->vregs, fpsimd.vregs, sizeof(fpsimd.vregs)); ctx->fpsr = fpsimd.fpsr; ctx->fpcr = fpsimd.fpcr; /* copy the magic/size information */ ctx->head.magic = FPSIMD_MAGIC; ctx->head.size = sizeof(struct fpsimd_context); } /* @ref.impl arch/arm64/kernel/signal.c::preserve_sve_context */ static void preserve_sve_context(void *ctx) { struct sve_context *sve_ctx = ctx; unsigned int vl = current_thread_info()->sve_vl; unsigned int vq; unsigned int fpscr[2] = { 0, 0 }; BUG_ON(!sve_vl_valid(vl)); vq = sve_vq_from_vl(vl); /* sve_context header set */ sve_ctx->head.magic = SVE_MAGIC; sve_ctx->head.size = ALIGN_UP(SVE_SIG_CONTEXT_SIZE(vq), 16); /* sve_context vl set */ sve_ctx->vl = vl; /* sve_context reserved area 0 clear */ memset(sve_ctx->__reserved, 0, sizeof(sve_ctx->__reserved)); /* sve register save */ /* fpsr & fpcr discards, because already saved by preserve_fpsimd_context() */ sve_save_state(ctx + SVE_SIG_FFR_OFFSET(vq), fpscr); } static int restore_fpsimd_context(struct fpsimd_context *ctx) { struct fpsimd_state fpsimd; unsigned int magic, size; /* check the magic/size information */ magic = ctx->head.magic; size = ctx->head.size; if (magic != FPSIMD_MAGIC || size != sizeof(struct fpsimd_context)) return -EINVAL; // copy the FP and status/control registers memcpy(fpsimd.vregs, ctx->vregs, sizeof(fpsimd.vregs)); fpsimd.fpsr = ctx->fpsr; fpsimd.fpcr = ctx->fpcr; /* load the hardware registers from the fpsimd_state structure */ fpsimd_load_state(&fpsimd); return 0; } /* @ref.impl arch/arm64/kernel/signal.c::__restore_sve_fpsimd_context */ static int __restore_sve_fpsimd_context(void *ctx, unsigned int vq, struct fpsimd_context *fpsimd) { struct fpsimd_sve_state(vq) *sst = ctx + SVE_SIG_ZREGS_OFFSET; int i = 0; /* vq check */ if (vq != sve_vq_from_vl(current_thread_info()->sve_vl)) { return -EINVAL; } /* copy from fpsimd_context vregs */ for (i = 0; i < 32; i++) { sst->zregs[i][0] = fpsimd->vregs[i]; } /* restore sve register */ sve_load_state(sst->ffr, &fpsimd->fpsr, vq - 1); return 0; } /* @ref.impl arch/arm64/kernel/signal.c::restore_sve_fpsimd_context */ static int restore_sve_fpsimd_context(void *ctx, struct fpsimd_context *fpsimd) { struct sve_context const *sve_ctx = ctx; uint16_t vl = sve_ctx->vl; uint16_t vq; /* vl check */ if (!sve_vl_valid(vl)) { return -EINVAL; } vq = sve_vq_from_vl(vl); return __restore_sve_fpsimd_context(ctx, vq, fpsimd); } /* @ref.impl arch/arm64/kernel/signal.c::SIGFRAME_MAXSZ */ /* Sanity limit on the maximum size of signal frame we'll try to generate. */ /* This is NOT ABI. */ #define SIGFRAME_MAXSZ _SZ64KB /* @ref.impl arch/arm64/kernel/signal.c::BUILD_BUG_ON in the __sigframe_alloc */ STATIC_ASSERT(SIGFRAME_MAXSZ == ALIGN_DOWN(SIGFRAME_MAXSZ, 16)); STATIC_ASSERT(SIGFRAME_MAXSZ > ALIGN_UP(sizeof(struct _aarch64_ctx), 16)); STATIC_ASSERT(ALIGN_UP(sizeof(struct sigsp), 16) < SIGFRAME_MAXSZ - ALIGN_UP(sizeof(struct _aarch64_ctx), 16)); /* @ref.impl arch/arm64/kernel/signal.c::parse_user_sigframe */ static int parse_user_sigframe(struct sigsp *sf) { struct sigcontext *sc = &sf->uc.uc_mcontext; struct _aarch64_ctx *head; char *base = (char *)&sc->__reserved; size_t offset = 0; size_t limit = sizeof(sc->__reserved); int have_extra_context = 0, err = -EINVAL; void *kextra_data = NULL; struct fpsimd_context *fpsimd_ctx = NULL; struct sve_context *sve_ctx = NULL; if (ALIGN_UP((unsigned long)base, 16) != (unsigned long)base) goto invalid; while (1) { unsigned int magic, size; BUG_ON(limit < offset); if (limit - offset < sizeof(*head)) goto invalid; if (ALIGN_DOWN(offset, 16) != offset) goto invalid; BUG_ON(ALIGN_UP((unsigned long)base + offset, 16) != (unsigned long)base + offset); head = (struct _aarch64_ctx *)(base + offset); magic = head->magic; size = head->size; if (limit - offset < size) goto invalid; switch (magic) { case 0: if (size) goto invalid; goto done; case FPSIMD_MAGIC: if (fpsimd_ctx) goto invalid; if (size < sizeof(struct fpsimd_context)) goto invalid; fpsimd_ctx = container_of(head, struct fpsimd_context, head); break; case ESR_MAGIC: /* ignore */ break; case SVE_MAGIC: { struct sve_context *sve_head = container_of(head, struct sve_context, head); if (!(elf_hwcap & HWCAP_SVE)) goto invalid; if (sve_ctx) goto invalid; if (size < sizeof(*sve_ctx)) goto invalid; sve_ctx = sve_head; break; } /* SVE_MAGIC */ case EXTRA_MAGIC: { struct extra_context const *extra; void __user *extra_data; unsigned int extra_size; if (have_extra_context) goto invalid; if (size < sizeof(*extra)) goto invalid; extra = (struct extra_context const *)head; extra_data = extra->data; extra_size = extra->size; /* Prevent looping/repeated parsing of extra_conext */ have_extra_context = 1; kextra_data = kmalloc(extra_size + 15, IHK_MC_AP_NOWAIT); if (copy_from_user((char *)ALIGN_UP((unsigned long)kextra_data, 16), extra_data, extra_size)) { goto invalid; } /* * Rely on the __user accessors to reject bogus * pointers. */ base = (char *)ALIGN_UP((unsigned long)kextra_data, 16); if (ALIGN_UP((unsigned long)base, 16) != (unsigned long)base) goto invalid; /* Reject "unreasonably large" frames: */ limit = extra_size; if (limit > SIGFRAME_MAXSZ - sizeof(sc->__reserved)) goto invalid; /* * Ignore trailing terminator in __reserved[] * and start parsing extra_data: */ offset = 0; continue; } /* EXTRA_MAGIC */ default: goto invalid; } if (size < sizeof(*head)) goto invalid; if (limit - offset < size) goto invalid; offset += size; } done: if (!fpsimd_ctx) goto invalid; if (sve_ctx) { err = restore_sve_fpsimd_context(sve_ctx, fpsimd_ctx); } else { err = restore_fpsimd_context(fpsimd_ctx); } invalid: if (kextra_data) { kfree(kextra_data); kextra_data = NULL; } return err; } SYSCALL_DECLARE(rt_sigreturn) { int i, err = 0; struct thread *thread = cpu_local_var(current); ihk_mc_user_context_t *regs = ctx; struct sigsp ksigsp; struct sigsp __user *usigsp; siginfo_t info; /* * Since we stacked the signal on a 128-bit boundary, then 'sp' should * be word aligned here. */ if (regs->sp & 15) goto bad_frame; usigsp = (struct sigsp __user *)regs->sp; if (copy_from_user(&ksigsp, usigsp, sizeof(ksigsp))) { goto bad_frame; } for (i = 0; i < 31; i++) { regs->regs[i] = ksigsp.uc.uc_mcontext.regs[i]; } regs->sp = ksigsp.uc.uc_mcontext.sp; regs->pc = ksigsp.uc.uc_mcontext.pc; regs->pstate = ksigsp.uc.uc_mcontext.pstate; // Avoid sys_rt_sigreturn() restarting. regs->syscallno = ~0UL; err = parse_user_sigframe(&ksigsp); if (err) goto bad_frame; thread->sigmask.__val[0] = ksigsp.uc.uc_sigmask.__val[0]; thread->sigstack.ss_flags = ksigsp.uc.uc_stack.ss_flags; if(ksigsp.restart){ return syscall(ksigsp.syscallno, regs); } if (thread->ctx.thread->flags & (1 << TIF_SINGLESTEP)) { memset(&info, 0, sizeof(info)); info.si_code = TRAP_HWBKPT; regs->regs[0] = ksigsp.sigrc; clear_single_step(thread); set_signal(SIGTRAP, regs, &info); check_signal(0, regs, 0); check_need_resched(); } return ksigsp.sigrc; bad_frame: ekprintf("[pid:%d]: bad frame in %s: pc=%08llx sp=%08llx\n", thread->proc->pid, __FUNCTION__, regs->pc, regs->sp); memset(&info, 0, sizeof(info)); info.si_signo = SIGSEGV; info.si_code = SI_KERNEL; set_signal(info.si_signo, regs, &info); return 0; } extern struct cpu_local_var *clv; extern unsigned long do_kill(struct thread *thread, int pid, int tid, int sig, struct siginfo *info, int ptracecont); extern void interrupt_syscall(struct thread *, int sig); extern int num_processors; long alloc_debugreg(struct thread *thread) { struct user_hwdebug_state *hws = NULL; /* LOWER: breakpoint register area. */ /* HIGHER: watchpoint register area. */ hws = kmalloc(sizeof(struct user_hwdebug_state) * 2, IHK_MC_AP_NOWAIT); if (hws == NULL) { kprintf("alloc_debugreg: no memory.\n"); return -ENOMEM; } memset(hws, 0, sizeof(struct user_hwdebug_state) * 2); /* initialize dbg_info */ hws[HWS_BREAK].dbg_info = ptrace_hbp_get_resource_info(NT_ARM_HW_BREAK); hws[HWS_WATCH].dbg_info = ptrace_hbp_get_resource_info(NT_ARM_HW_WATCH); thread->ptrace_debugreg = (unsigned long *)hws; return 0; } void save_debugreg(unsigned long *debugreg) { struct user_hwdebug_state *hws = (struct user_hwdebug_state *)debugreg; int i = 0; /* save DBGBVR_EL1 and DBGBCR_EL1 (n=0-(core_num_brps-1)) */ for (i = 0; i < core_num_brps; i++) { hws[HWS_BREAK].dbg_regs[i].addr = read_wb_reg(AARCH64_DBG_REG_BVR, i); hws[HWS_BREAK].dbg_regs[i].ctrl = read_wb_reg(AARCH64_DBG_REG_BCR, i); } /* save DBGWVR_EL1 and DBGWCR_EL1 (n=0-(core_num_wrps-1)) */ for (i = 0; i < core_num_wrps; i++) { hws[HWS_WATCH].dbg_regs[i].addr = read_wb_reg(AARCH64_DBG_REG_WVR, i); hws[HWS_WATCH].dbg_regs[i].ctrl = read_wb_reg(AARCH64_DBG_REG_WCR, i); } } void restore_debugreg(unsigned long *debugreg) { struct user_hwdebug_state *hws = (struct user_hwdebug_state *)debugreg; unsigned int mdscr; int i = 0; /* set MDSCR_EL1.MDE */ mdscr = mdscr_read(); mdscr |= DBG_MDSCR_MDE; mdscr_write(mdscr); /* restore DBGBVR_EL1 and DBGBCR_EL1 (n=0-(core_num_brps-1)) */ for (i = 0; i < core_num_brps; i++) { write_wb_reg(AARCH64_DBG_REG_BVR, i, hws[HWS_BREAK].dbg_regs[i].addr); write_wb_reg(AARCH64_DBG_REG_BCR, i, hws[HWS_BREAK].dbg_regs[i].ctrl); } /* restore DBGWVR_EL1 and DBGWCR_EL1 (n=0-(core_num_wrps-1)) */ for (i = 0; i < core_num_wrps; i++) { write_wb_reg(AARCH64_DBG_REG_WVR, i, hws[HWS_WATCH].dbg_regs[i].addr); write_wb_reg(AARCH64_DBG_REG_WCR, i, hws[HWS_WATCH].dbg_regs[i].ctrl); } } void clear_debugreg(void) { unsigned int mdscr; /* clear DBGBVR_EL1 and DBGBCR_EL1 (n=0-(core_num_brps-1)) */ /* clear DBGWVR_EL1 and DBGWCR_EL1 (n=0-(core_num_wrps-1)) */ hw_breakpoint_reset(); /* clear MDSCR_EL1.MDE */ mdscr = mdscr_read(); mdscr &= ~DBG_MDSCR_MDE; mdscr_write(mdscr); } void clear_single_step(struct thread *thread) { clear_regs_spsr_ss(thread->uctx); thread->ctx.thread->flags &= ~(1 << TIF_SINGLESTEP); } void set_single_step(struct thread *thread) { thread->ctx.thread->flags |= (1 << TIF_SINGLESTEP); set_regs_spsr_ss(thread->uctx); } extern void coredump(struct thread *thread, void *regs); static int isrestart(int syscallno, unsigned long rc, int sig, int restart) { if(syscallno == 0 || rc != -EINTR) return 0; /* * The following interfaces are never restarted after being interrupted * by a signal handler, regardless of the use of SA_RESTART * Interfaces used to wait for signals: * pause(2), sigsuspend(2), sigtimedwait(2), and sigwaitinfo(2). * File descriptor multiplexing interfaces: * epoll_wait(2), epoll_pwait(2), poll(2), ppoll(2), select(2), and pselect(2). * System V IPC interfaces: * msgrcv(2), msgsnd(2), semop(2), and semtimedop(2). * Sleep interfaces: * clock_nanosleep(2), nanosleep(2), and usleep(3). * io_getevents(2). * * Note: following functions will issue another systemcall. * pause(2) -> rt_sigsuspend * epoll_wait(2) -> epoll_pwait * poll(2) -> ppoll * select(2) -> pselect6 */ switch(syscallno){ case __NR_rt_sigsuspend: case __NR_rt_sigtimedwait: case __NR_epoll_pwait: case __NR_ppoll: case __NR_pselect6: case __NR_msgrcv: case __NR_msgsnd: case __NR_semop: case __NR_semtimedop: case __NR_clock_nanosleep: case __NR_nanosleep: case __NR_io_getevents: return 0; } if(sig == SIGCHLD) return 1; if(restart) return 1; return 0; } /* @ref.impl arch/arm64/kernel/signal.c::init_user_layout */ static void init_user_layout(struct rt_sigframe_user_layout *user) { const size_t __reserved_size = sizeof(user->usigframe->uc.uc_mcontext.__reserved); const size_t terminator_size = ALIGN_UP(sizeof(struct _aarch64_ctx), 16); memset(user, 0, sizeof *user); user->size = offsetof(struct sigsp, uc.uc_mcontext.__reserved); user->limit = user->size + (__reserved_size - terminator_size - sizeof(struct extra_context)); /* Reserve space for extension and terminator ^ */ BUG_ON(user->limit <= user->size); } /* @ref.impl arch/arm64/kernel/signal.c::sigframe_size */ static size_t sigframe_size(struct rt_sigframe_user_layout const *user) { size_t size; /* FIXME: take user->limit into account? */ if (user->size > sizeof(struct sigsp)) { size = user->size; } else { size = sizeof(struct sigsp); } return ALIGN_UP(size, 16); } /* @ref.impl arch/arm64/kernel/signal.c::__sigframe_alloc */ static int __sigframe_alloc(struct rt_sigframe_user_layout *user, unsigned long *offset, size_t size, unsigned char extend) { unsigned long padded_size = ALIGN_UP(size, 16); /* Sanity-check invariants */ BUG_ON(user->limit < user->size); BUG_ON(user->size != ALIGN_DOWN(user->size, 16)); BUG_ON(size < sizeof(struct _aarch64_ctx)); if (padded_size > user->limit - user->size && !user->extra_offset && extend) { int ret; ret = __sigframe_alloc(user, &user->extra_offset, sizeof(struct extra_context), 0); if (ret) { return ret; } /* * Further allocations must go after the fixed-size * part of the signal frame: */ user->size = ALIGN_UP(sizeof(struct sigsp), 16); /* * Allow expansion up to SIGFRAME_MAXSZ, ensuring space for * the terminator: */ user->limit = SIGFRAME_MAXSZ - ALIGN_UP(sizeof(struct _aarch64_ctx), 16); } /* Still not enough space? Bad luck! */ if (padded_size > user->limit - user->size) { return -ENOMEM; } /* Anti-leakage check: don't double-allocate the same block: */ BUG_ON(*offset); *offset = user->size; user->size += padded_size; /* Check invariants again */ BUG_ON(user->limit < user->size); BUG_ON(user->size != ALIGN_DOWN(user->size, 16)); return 0; } /* @ref.impl arch/arm64/kernel/signal.c::sigframe_alloc */ /* Allocate space for an optional record of bytes in the user * signal frame. The offset from the signal frame base address to the * allocated block is assigned to *offset. */ static int sigframe_alloc(struct rt_sigframe_user_layout *user, unsigned long *offset, size_t size) { return __sigframe_alloc(user, offset, size, 1); } /* @ref.impl arch/arm64/kernel/signal.c::sigframe_alloc_end */ /* Allocate the null terminator record and prevent further allocations */ static int sigframe_alloc_end(struct rt_sigframe_user_layout *user) { int ret; const size_t __reserved_size = sizeof(user->ksigframe->uc.uc_mcontext.__reserved); const size_t __reserved_offset = offsetof(struct sigsp, uc.uc_mcontext.__reserved); const size_t terminator_size = ALIGN_UP(sizeof(struct _aarch64_ctx), 16); if (user->extra_offset) { BUG_ON(user->limit != SIGFRAME_MAXSZ - terminator_size); } else { BUG_ON(user->limit != __reserved_offset + (__reserved_size - terminator_size - sizeof(struct extra_context))); } /* Un-reserve the space reserved for the terminator: */ user->limit += terminator_size; ret = sigframe_alloc(user, &user->end_offset, sizeof(struct _aarch64_ctx)); if (ret) { return ret; } /* Prevent further allocation: */ user->limit = user->size; return 0; } /* @ref.impl arch/arm64/kernel/signal.c::apply_user_offset */ /* changed McKernel, void *p and return value is kernel area address, function name */ static void *get_sigframe_context_kaddr( struct rt_sigframe_user_layout const *user, unsigned long offset) { char *base = (char *)user->ksigframe; BUG_ON(!base); BUG_ON(!offset); /* * TODO: sanity-check that the result is within appropriate bounds * (should be ensured by the use of set_user_offset() to compute * all offsets. */ return base + offset; } /* @ref.impl arch/arm64/kernel/signal.c::apply_user_offset */ /* changed McKernel, function name */ static void __user *get_sigframe_context_uaddr( struct rt_sigframe_user_layout const *user, unsigned long offset) { char __user *base = (char __user *)user->usigframe; BUG_ON(!base); BUG_ON(!offset); /* * TODO: sanity-check that the result is within appropriate bounds * (should be ensured by the use of set_user_offset() to compute * all offsets. */ return base + offset; } /* @ref.impl arch/arm64/kernel/signal.c::setup_sigframe_layout */ /* Determine the layout of optional records in the signal frame */ static int setup_sigframe_layout(struct rt_sigframe_user_layout *user) { int err; err = sigframe_alloc(user, &user->fpsimd_offset, sizeof(struct fpsimd_context)); if (err) return err; /* fault information, if valid */ if (current_thread_info()->fault_code) { err = sigframe_alloc(user, &user->esr_offset, sizeof(struct esr_context)); if (err) return err; } if (likely(elf_hwcap & (HWCAP_FP | HWCAP_ASIMD))) { if (likely(elf_hwcap & HWCAP_SVE)) { unsigned int vq = sve_vq_from_vl(current_thread_info()->sve_vl); err = sigframe_alloc(user, &user->sve_offset, SVE_SIG_CONTEXT_SIZE(vq)); if (err) return err; } } return sigframe_alloc_end(user); } /* @ref.impl arch/arm64/kernel/signal.c::get_sigframe */ static int get_sigframe(struct thread *thread, struct rt_sigframe_user_layout *user, struct pt_regs *regs, unsigned long sa_flags) { unsigned long sp, sp_top, frame_size; int err; init_user_layout(user); // get signal frame if ((sa_flags & SA_ONSTACK) && !(thread->sigstack.ss_flags & SS_DISABLE) && !(thread->sigstack.ss_flags & SS_ONSTACK)) { unsigned long lsp; lsp = ((unsigned long)(((char *)thread->sigstack.ss_sp) + thread->sigstack.ss_size)) & ~15UL; sp = sp_top = lsp; thread->sigstack.ss_flags |= SS_ONSTACK; } else { sp = sp_top = regs->sp; } sp = ALIGN_DOWN(sp, 16); /* calc sigframe layout */ err = setup_sigframe_layout(user); if (err) return err; /* calc new user stack pointer */ frame_size = sigframe_size(user); sp -= frame_size; BUG_ON(ALIGN_DOWN(sp, 16) != sp); /* set user sp address and kernel sigframe address */ user->usigframe = (struct sigsp __user *)sp; return 0; } /* @ref.impl arch/arm64/kernel/signal.c::setup_rt_frame */ static int setup_rt_frame(int usig, unsigned long rc, int to_restart, int syscallno, struct k_sigaction *k, struct sig_pending *pending, struct pt_regs *regs, struct thread *thread) { struct rt_sigframe_user_layout user; struct sigsp *kframe; struct sigsp __user *uframe; int i = 0, err = 0, kpages = 0; struct _aarch64_ctx *end; /* get signal frame info */ memset(&user, 0, sizeof(user)); if (get_sigframe(thread, &user, regs, k->sa.sa_flags)) { return 1; } /* allocate kernel sigframe buffer */ kpages = (sigframe_size(&user) + PAGE_SIZE - 1) >> PAGE_SHIFT; user.ksigframe = ihk_mc_alloc_pages(kpages, IHK_MC_AP_NOWAIT); /* set kernel sigframe lowest addr */ kframe = user.ksigframe; /* set user sigframe lowest addr */ uframe = user.usigframe; // init non use data. kframe->uc.uc_flags = 0; kframe->uc.uc_link = NULL; // save alternate stack infomation. kframe->uc.uc_stack.ss_sp = uframe; kframe->uc.uc_stack.ss_flags = thread->sigstack.ss_size; kframe->uc.uc_stack.ss_size = thread->sigstack.ss_flags; // save signal frame. kframe->fp = regs->regs[29]; kframe->lr = regs->regs[30]; kframe->sigrc = rc; for (i = 0; i < 31; i++) { kframe->uc.uc_mcontext.regs[i] = regs->regs[i]; } kframe->uc.uc_mcontext.sp = regs->sp; kframe->uc.uc_mcontext.pc = regs->pc; kframe->uc.uc_mcontext.pstate = regs->pstate; kframe->uc.uc_mcontext.fault_address = current_thread_info()->fault_address; kframe->uc.uc_sigmask = thread->sigmask; // save fp simd context. preserve_fpsimd_context(get_sigframe_context_kaddr(&user, user.fpsimd_offset)); if (user.esr_offset) { // save esr context. struct esr_context *esr_ctx = get_sigframe_context_kaddr(&user, user.esr_offset); esr_ctx->head.magic = ESR_MAGIC; esr_ctx->head.size = sizeof(*esr_ctx); esr_ctx->esr = current_thread_info()->fault_code; } if (user.sve_offset) { // save sve context. struct sve_context *sve_ctx = get_sigframe_context_kaddr(&user, user.sve_offset); preserve_sve_context(sve_ctx); } if (user.extra_offset) { // save extra context. struct extra_context *extra = get_sigframe_context_kaddr(&user, user.extra_offset); struct _aarch64_ctx *end = (struct _aarch64_ctx *)((char *)extra + ALIGN_UP(sizeof(*extra), 16)); void __user *extra_data = get_sigframe_context_uaddr(&user, ALIGN_UP(sizeof(struct sigsp), 16)); unsigned int extra_size = ALIGN_UP(user.size, 16) - ALIGN_UP(sizeof(struct sigsp), 16); /* * ^ FIXME: bounds sanity-checks: both of these should fit * within __reserved! */ extra->head.magic = EXTRA_MAGIC; extra->head.size = sizeof(*extra); extra->data = extra_data; extra->size = extra_size; /* Add the terminator */ end->magic = 0; end->size = 0; } // set the "end" magic end = get_sigframe_context_kaddr(&user, user.end_offset); end->magic = 0; end->size = 0; // save syscall infomation to restart. kframe->syscallno = syscallno; kframe->restart = to_restart; /* set sig handler context */ // set restart context regs->regs[0] = usig; regs->sp = (unsigned long)uframe; regs->regs[29] = (unsigned long)&uframe->fp; regs->pc = (unsigned long)k->sa.sa_handler; if (k->sa.sa_flags & SA_RESTORER){ regs->regs[30] = (unsigned long)k->sa.sa_restorer; } else { regs->regs[30] = (unsigned long)VDSO_SYMBOL(thread->vm->vdso_addr, sigtramp); } if(k->sa.sa_flags & SA_SIGINFO){ kframe->info = pending->info; regs->regs[1] = (unsigned long)&uframe->info; regs->regs[2] = (unsigned long)&uframe->uc; } /* copy to user sigframe */ err = copy_to_user(user.usigframe, user.ksigframe, sigframe_size(&user)); /* free kernel sigframe buffer */ ihk_mc_free_pages(user.ksigframe, kpages); return err; } void do_signal(unsigned long rc, void *regs0, struct thread *thread, struct sig_pending *pending, int syscallno) { struct pt_regs *regs = regs0; struct k_sigaction *k; int sig; __sigset_t w; struct process *proc = thread->proc; int orgsig; int ptraceflag = 0; struct mcs_rwlock_node_irqsave lock; struct mcs_rwlock_node_irqsave mcs_rw_node; for(w = pending->sigmask.__val[0], sig = 0; w; sig++, w >>= 1); dkprintf("do_signal(): tid=%d, pid=%d, sig=%d\n", thread->tid, proc->pid, sig); orgsig = sig; if((proc->ptrace & PT_TRACED) && pending->ptracecont == 0 && sig != SIGKILL) { ptraceflag = 1; sig = SIGSTOP; } if(regs == NULL){ /* call from syscall */ regs = thread->uctx; } else{ rc = regs->regs[0]; } mcs_rwlock_writer_lock(&thread->sigcommon->lock, &mcs_rw_node); k = thread->sigcommon->action + sig - 1; if(k->sa.sa_handler == SIG_IGN){ kfree(pending); mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node); return; } else if(k->sa.sa_handler){ /* save signal frame */ int to_restart = 0; // check syscall to have restart ? to_restart = isrestart(syscallno, rc, sig, k->sa.sa_flags & SA_RESTART); if(syscallno != 0 && rc == -EINTR && sig == SIGCHLD) { to_restart = 1; } if(to_restart == 1) { /* Prepare for system call restart. */ regs->regs[0] = regs->orig_x0; } if (setup_rt_frame(sig, rc, to_restart, syscallno, k, pending, regs, thread)) { kfree(pending); mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node); kprintf("do_signal,page_fault_thread_vm failed\n"); terminate(0, sig); return; } // check signal handler is ONESHOT if(k->sa.sa_flags & SA_RESETHAND) { k->sa.sa_handler = SIG_DFL; } if(!(k->sa.sa_flags & SA_NODEFER)) thread->sigmask.__val[0] |= pending->sigmask.__val[0]; kfree(pending); mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node); if (thread->ctx.thread->flags & (1 << TIF_SINGLESTEP)) { siginfo_t info = { .si_code = TRAP_HWBKPT, }; clear_single_step(thread); set_signal(SIGTRAP, regs, &info); check_signal(0, regs, 0); check_need_resched(); } } else { int coredumped = 0; siginfo_t info; if(ptraceflag){ if(thread->ptrace_recvsig) kfree(thread->ptrace_recvsig); thread->ptrace_recvsig = pending; if(thread->ptrace_sendsig) kfree(thread->ptrace_sendsig); thread->ptrace_sendsig = NULL; } else kfree(pending); mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node); switch (sig) { case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: if(ptraceflag){ ptrace_report_signal(thread, orgsig); } else{ memset(&info, '\0', sizeof info); info.si_signo = SIGCHLD; info.si_code = CLD_STOPPED; info._sifields._sigchld.si_pid = thread->proc->pid; info._sifields._sigchld.si_status = (sig << 8) | 0x7f; do_kill(cpu_local_var(current), thread->proc->parent->pid, -1, SIGCHLD, &info, 0); dkprintf("do_signal,SIGSTOP,changing state\n"); /* Update thread state in fork tree */ mcs_rwlock_writer_lock(&proc->update_lock, &lock); proc->group_exit_status = SIGSTOP; /* Reap and set new signal_flags */ proc->signal_flags = SIGNAL_STOP_STOPPED; #ifdef POSTK_DEBUG_TEMP_FIX_41 /* early to wait4() wakeup for ptrace, fix. */ proc->status = PS_DELAY_STOPPED; #else /* POSTK_DEBUG_TEMP_FIX_41 */ proc->status = PS_STOPPED; #endif /* POSTK_DEBUG_TEMP_FIX_41 */ thread->status = PS_STOPPED; mcs_rwlock_writer_unlock(&proc->update_lock, &lock); #ifndef POSTK_DEBUG_TEMP_FIX_41 /* early to wait4() wakeup for ptrace, fix. */ /* Wake up the parent who tried wait4 and sleeping */ waitq_wakeup(&proc->parent->waitpid_q); #endif /* !POSTK_DEBUG_TEMP_FIX_41 */ dkprintf("do_signal(): pid: %d, tid: %d SIGSTOP, sleeping\n", proc->pid, thread->tid); /* Sleep */ schedule(); dkprintf("SIGSTOP(): woken up\n"); } break; case SIGTRAP: dkprintf("do_signal,SIGTRAP\n"); if(!(proc->ptrace & PT_TRACED)) { goto core; } /* Update thread state in fork tree */ mcs_rwlock_writer_lock(&proc->update_lock, &lock); thread->exit_status = SIGTRAP; #ifdef POSTK_DEBUG_TEMP_FIX_41 /* early to wait4() wakeup for ptrace, fix. */ proc->status = PS_DELAY_TRACED; #else /* POSTK_DEBUG_TEMP_FIX_41 */ proc->status = PS_TRACED; #endif /* POSTK_DEBUG_TEMP_FIX_41 */ thread->status = PS_TRACED; mcs_rwlock_writer_unlock(&proc->update_lock, &lock); #ifndef POSTK_DEBUG_TEMP_FIX_41 /* early to wait4() wakeup for ptrace, fix. */ /* Wake up the parent who tried wait4 and sleeping */ waitq_wakeup(&thread->proc->parent->waitpid_q); #endif /* !POSTK_DEBUG_TEMP_FIX_41 */ /* Sleep */ dkprintf("do_signal,SIGTRAP,sleeping\n"); schedule(); dkprintf("SIGTRAP(): woken up\n"); break; case SIGCONT: memset(&info, '\0', sizeof info); info.si_signo = SIGCHLD; info.si_code = CLD_CONTINUED; info._sifields._sigchld.si_pid = proc->pid; info._sifields._sigchld.si_status = 0x0000ffff; do_kill(cpu_local_var(current), proc->parent->pid, -1, SIGCHLD, &info, 0); proc->signal_flags = SIGNAL_STOP_CONTINUED; proc->status = PS_RUNNING; dkprintf("do_signal,SIGCONT,do nothing\n"); break; case SIGQUIT: case SIGILL: case SIGABRT: case SIGFPE: case SIGSEGV: case SIGBUS: case SIGSYS: case SIGXCPU: case SIGXFSZ: core: dkprintf("do_signal,default,core,sig=%d\n", sig); coredump(thread, regs); coredumped = 0x80; terminate(0, sig | coredumped); break; case SIGCHLD: case SIGURG: break; default: dkprintf("do_signal,default,terminate,sig=%d\n", sig); terminate(0, sig); break; } } } static struct sig_pending * getsigpending(struct thread *thread, int delflag){ struct list_head *head; mcs_rwlock_lock_t *lock; struct mcs_rwlock_node_irqsave mcs_rw_node; struct sig_pending *next; struct sig_pending *pending; __sigset_t w; w = thread->sigmask.__val[0]; lock = &thread->sigcommon->lock; head = &thread->sigcommon->sigpending; for(;;) { if (delflag) mcs_rwlock_writer_lock(lock, &mcs_rw_node); else mcs_rwlock_reader_lock(lock, &mcs_rw_node); list_for_each_entry_safe(pending, next, head, list){ if(!(pending->sigmask.__val[0] & w)){ if(delflag) list_del(&pending->list); if (delflag) mcs_rwlock_writer_unlock(lock, &mcs_rw_node); else mcs_rwlock_reader_unlock(lock, &mcs_rw_node); return pending; } } if (delflag) mcs_rwlock_writer_unlock(lock, &mcs_rw_node); else mcs_rwlock_reader_unlock(lock, &mcs_rw_node); if(lock == &thread->sigpendinglock) return NULL; lock = &thread->sigpendinglock; head = &thread->sigpending; } return NULL; } struct sig_pending * hassigpending(struct thread *thread) { return getsigpending(thread, 0); } int interrupt_from_user(void *regs0) { struct pt_regs *regs = regs0; return((regs->pstate & PSR_MODE_MASK) == PSR_MODE_EL0t); } void check_signal(unsigned long rc, void *regs0, int num) { __check_signal(rc, regs0, num, 0); } void check_signal_irq_disabled(unsigned long rc, void *regs0, int num) { __check_signal(rc, regs0, num, 1); } static void __check_signal(unsigned long rc, void *regs0, int num, int irq_disabled) { ihk_mc_user_context_t *regs = regs0; struct thread *thread; struct sig_pending *pending; int irqstate; if(clv == NULL) return; thread = cpu_local_var(current); /** * If check_signal is called from syscall(), * then save syscall return value. */ if((regs == NULL)&&(num != __NR_rt_sigsuspend)){ /* It's call from syscall! */ // Get user context through current thread // and update syscall return. ihk_mc_syscall_arg0(thread->uctx) = rc; } if(thread == NULL || thread->proc->pid == 0){ struct thread *t; irqstate = ihk_mc_spinlock_lock(&(cpu_local_var(runq_lock))); list_for_each_entry(t, &(cpu_local_var(runq)), sched_list){ if(t->proc->pid <= 0) continue; if(t->status == PS_INTERRUPTIBLE && hassigpending(t)){ t->status = PS_RUNNING; break; } } ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)), irqstate); goto out; } if(regs != NULL && !interrupt_from_user(regs)) { goto out; } for(;;){ /* When this function called from check_signal_irq_disabled, * return with interrupt invalid. * This is to eliminate signal loss. */ if (irq_disabled == 1) { irqstate = cpu_disable_interrupt_save(); } pending = getsigpending(thread, 1); if(!pending) { dkprintf("check_signal,queue is empty\n"); goto out; } if (irq_disabled == 1) { cpu_restore_interrupt(irqstate); } do_signal(rc, regs, thread, pending, num); } out: return; } unsigned long do_kill(struct thread * thread, int pid, int tid, int sig, siginfo_t *info, int ptracecont) { dkprintf("do_kill,pid=%d,tid=%d,sig=%d\n", pid, tid, sig); struct thread *t; struct process *tproc; struct process *proc = thread? thread->proc: NULL; struct thread *tthread = NULL; int i; __sigset_t mask; mcs_rwlock_lock_t *savelock = NULL; struct mcs_rwlock_node mcs_rw_node; struct list_head *head = NULL; int rc; unsigned long irqstate = 0; struct k_sigaction *k; int doint; int found = 0; siginfo_t info0; struct resource_set *rset = cpu_local_var(resource_set); int hash; struct thread_hash *thash = rset->thread_hash; struct process_hash *phash = rset->process_hash; struct mcs_rwlock_node lock; struct mcs_rwlock_node updatelock; if(sig > SIGRTMAX || sig < 0) return -EINVAL; if(info == NULL){ memset(&info0, '\0', sizeof info0); info = &info0; info0.si_signo = sig; info0.si_code = SI_KERNEL; } if(tid == -1 && pid <= 0){ struct process *p; struct mcs_rwlock_node_irqsave slock; int pgid = -pid; int rc = -ESRCH; int *pids; int n = 0; int sendme = 0; if(pid == 0){ if(thread == NULL || thread->proc->pid <= 0) return -ESRCH; pgid = thread->proc->pgid; } pids = kmalloc(sizeof(int) * num_processors, IHK_MC_AP_NOWAIT); if(!pids) return -ENOMEM; for(i = 0; i < HASH_SIZE; i++){ mcs_rwlock_reader_lock(&phash->lock[i], &slock); list_for_each_entry(p, &phash->list[i], hash_list){ if(pgid != 1 && p->pgid != pgid) continue; if(thread && p->pid == thread->proc->pid){ sendme = 1; continue; } pids[n] = p->pid; n++; } mcs_rwlock_reader_unlock(&phash->lock[i], &slock); } for(i = 0; i < n; i++) rc = do_kill(thread, pids[i], -1, sig, info, ptracecont); if(sendme) rc = do_kill(thread, thread->proc->pid, -1, sig, info, ptracecont); kfree(pids); return rc; } irqstate = cpu_disable_interrupt_save(); mask = __sigmask(sig); if(tid == -1){ struct thread *tthread0 = NULL; struct mcs_rwlock_node plock; struct mcs_rwlock_node updatelock; found = 0; hash = process_hash(pid); mcs_rwlock_reader_lock_noirq(&phash->lock[hash], &plock); list_for_each_entry(tproc, &phash->list[hash], hash_list){ if(tproc->pid == pid){ found = 1; break; } } if(!found){ mcs_rwlock_reader_unlock_noirq(&phash->lock[hash], &plock); cpu_restore_interrupt(irqstate); return -ESRCH; } mcs_rwlock_reader_lock_noirq(&tproc->update_lock, &updatelock); if(tproc->status == PS_EXITED || tproc->status == PS_ZOMBIE){ goto done; } mcs_rwlock_reader_lock_noirq(&tproc->threads_lock, &lock); list_for_each_entry(t, &tproc->threads_list, siblings_list){ if(t->tid == pid || tthread == NULL){ if(t->status == PS_EXITED){ continue; } if(!(mask & t->sigmask.__val[0])){ tthread = t; found = 1; } else if(tthread == NULL && tthread0 == NULL){ tthread0 = t; found = 1; } } } if(tthread == NULL){ tthread = tthread0; } if(tthread && tthread->status != PS_EXITED){ savelock = &tthread->sigcommon->lock; head = &tthread->sigcommon->sigpending; hold_thread(tthread); } else tthread = NULL; mcs_rwlock_reader_unlock_noirq(&tproc->threads_lock, &lock); done: mcs_rwlock_reader_unlock_noirq(&tproc->update_lock, &updatelock); mcs_rwlock_reader_unlock_noirq(&phash->lock[hash], &plock); } else{ found = 0; hash = thread_hash(tid); mcs_rwlock_reader_lock_noirq(&thash->lock[hash], &lock); list_for_each_entry(tthread, &thash->list[hash], hash_list){ if(pid != -1 && tthread->proc->pid != pid){ continue; } if (tthread->tid == tid && tthread->status != PS_EXITED) { found = 1; break; } } if(!found){ mcs_rwlock_reader_unlock_noirq(&thash->lock[hash], &lock); cpu_restore_interrupt(irqstate); return -ESRCH; } tproc = tthread->proc; mcs_rwlock_reader_lock_noirq(&tproc->update_lock, &updatelock); savelock = &tthread->sigpendinglock; head = &tthread->sigpending; if(sig == SIGKILL || (tproc->status != PS_EXITED && tproc->status != PS_ZOMBIE && tthread->status != PS_EXITED)){ hold_thread(tthread); } else{ tthread = NULL; } mcs_rwlock_reader_unlock_noirq(&tproc->update_lock, &updatelock); mcs_rwlock_reader_unlock_noirq(&thash->lock[hash], &lock); } if(sig != SIGCONT && proc && proc->euid != 0 && proc->ruid != tproc->ruid && proc->euid != tproc->ruid && proc->ruid != tproc->suid && proc->euid != tproc->suid){ if(tthread) release_thread(tthread); cpu_restore_interrupt(irqstate); return -EPERM; } if(sig == 0 || tthread == NULL || tthread->status == PS_EXITED){ if(tthread) release_thread(tthread); cpu_restore_interrupt(irqstate); return 0; } if (tthread->thread_offloaded) { interrupt_syscall(tthread, sig); release_thread(tthread); return 0; } doint = 0; mcs_rwlock_writer_lock_noirq(savelock, &mcs_rw_node); /* Put signal event even when handler is SIG_IGN or SIG_DFL because target ptraced thread must call ptrace_report_signal in check_signal */ rc = 0; k = tthread->sigcommon->action + sig - 1; if((sig != SIGKILL && (tproc->ptrace & PT_TRACED)) || (k->sa.sa_handler != SIG_IGN && (k->sa.sa_handler != NULL || (sig != SIGCHLD && sig != SIGURG)))){ struct sig_pending *pending = NULL; if (sig < SIGRTMIN) { // SIGRTMIN - SIGRTMAX list_for_each_entry(pending, head, list){ if(pending->sigmask.__val[0] == mask && pending->ptracecont == ptracecont) break; } if(&pending->list == head) pending = NULL; } if(pending == NULL){ doint = 1; pending = kmalloc(sizeof(struct sig_pending), IHK_MC_AP_NOWAIT); if(!pending){ rc = -ENOMEM; } else{ pending->sigmask.__val[0] = mask; memcpy(&pending->info, info, sizeof(siginfo_t)); pending->ptracecont = ptracecont; if(sig == SIGKILL || sig == SIGSTOP) list_add(&pending->list, head); else list_add_tail(&pending->list, head); tthread->sigevent = 1; } } } mcs_rwlock_writer_unlock_noirq(savelock, &mcs_rw_node); cpu_restore_interrupt(irqstate); if (doint && !(mask & tthread->sigmask.__val[0])) { int status = tthread->status; #ifdef POSTK_DEBUG_TEMP_FIX_74 /* interrupt_syscall() timing change */ #ifdef POSTK_DEBUG_TEMP_FIX_48 /* nohost flag missed fix */ if(tthread->proc->status != PS_EXITED) interrupt_syscall(tthread, 0); #else /* POSTK_DEBUG_TEMP_FIX_48 */ if(!tthread->proc->nohost) interrupt_syscall(tthread, 0); #endif /* POSTK_DEBUG_TEMP_FIX_48 */ #endif /* POSTK_DEBUG_TEMP_FIX_74 */ if (thread != tthread) { dkprintf("do_kill,ipi,pid=%d,cpu_id=%d\n", tproc->pid, tthread->cpu_id); #define IPI_CPU_NOTIFY 0 ihk_mc_interrupt_cpu(tthread->cpu_id, INTRID_CPU_NOTIFY); } #ifndef POSTK_DEBUG_TEMP_FIX_74 /* interrupt_syscall() timing change */ if(!tthread->proc->nohost) interrupt_syscall(tthread, 0); #endif /* !POSTK_DEBUG_TEMP_FIX_74 */ if (status != PS_RUNNING) { if(sig == SIGKILL){ /* Wake up the target only when stopped by ptrace-reporting */ sched_wakeup_thread(tthread, PS_TRACED | PS_STOPPED | PS_INTERRUPTIBLE); } else if(sig == SIGCONT || ptracecont == 1){ /* Wake up the target only when stopped by SIGSTOP */ sched_wakeup_thread(tthread, PS_STOPPED); tthread->proc->status = PS_RUNNING; } else { sched_wakeup_thread(tthread, PS_INTERRUPTIBLE); } } } release_thread(tthread); return rc; } void set_signal(int sig, void *regs0, siginfo_t *info) { ihk_mc_user_context_t *regs = regs0; struct thread *thread = cpu_local_var(current); if(thread == NULL || thread->proc->pid == 0) return; if((__sigmask(sig) & thread->sigmask.__val[0]) || !interrupt_from_user(regs)){ coredump(thread, regs0); terminate(0, sig | 0x80); } do_kill(thread, thread->proc->pid, thread->tid, sig, info, 0); } SYSCALL_DECLARE(mmap) { const int supported_flags = 0 | MAP_SHARED // 0x01 | MAP_PRIVATE // 0x02 | MAP_FIXED // 0x10 | MAP_ANONYMOUS // 0x20 | MAP_LOCKED // 0x2000 | MAP_POPULATE // 0x8000 | MAP_HUGETLB // 00040000 | (0x3F << MAP_HUGE_SHIFT) // FC000000 ; const int ignored_flags = 0 | MAP_DENYWRITE // 0x0800 | MAP_NORESERVE // 0x4000 | MAP_STACK // 0x20000 ; const int error_flags = 0 | MAP_GROWSDOWN // 0x0100 | MAP_EXECUTABLE // 0x1000 | MAP_NONBLOCK // 0x10000 ; const intptr_t addr0 = ihk_mc_syscall_arg0(ctx); const size_t len0 = ihk_mc_syscall_arg1(ctx); const int prot = ihk_mc_syscall_arg2(ctx); const int flags0 = ihk_mc_syscall_arg3(ctx); const int fd = ihk_mc_syscall_arg4(ctx); const off_t off0 = ihk_mc_syscall_arg5(ctx); struct thread *thread = cpu_local_var(current); struct vm_regions *region = &thread->vm->region; int error; intptr_t addr = 0; size_t len; int flags = flags0; size_t pgsize; dkprintf("sys_mmap(%lx,%lx,%x,%x,%d,%lx)\n", addr0, len0, prot, flags0, fd, off0); /* check constants for flags */ if (1) { int dup_flags; dup_flags = (supported_flags & ignored_flags); dup_flags |= (ignored_flags & error_flags); dup_flags |= (error_flags & supported_flags); if (dup_flags) { ekprintf("sys_mmap:duplicate flags: %lx\n", dup_flags); ekprintf("s-flags: %08x\n", supported_flags); ekprintf("i-flags: %08x\n", ignored_flags); ekprintf("e-flags: %08x\n", error_flags); panic("sys_mmap:duplicate flags\n"); /* no return */ } } /* check arguments */ pgsize = PAGE_SIZE; if (flags & MAP_HUGETLB) { switch (flags & (0x3F << MAP_HUGE_SHIFT)) { case 0: flags |= MAP_HUGE_SECOND_BLOCK; /* default hugepage size */ break; case MAP_HUGE_SECOND_BLOCK: case MAP_HUGE_FIRST_BLOCK: break; default: ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):" "not supported page size.\n", addr0, len0, prot, flags0, fd, off0); error = -EINVAL; goto out; } pgsize = (size_t)1 << ((flags >> MAP_HUGE_SHIFT) & 0x3F); } #define VALID_DUMMY_ADDR ((region->user_start + PTL3_SIZE - 1) & ~(PTL3_SIZE - 1)) addr = (flags & MAP_FIXED)? addr0: VALID_DUMMY_ADDR; len = (len0 + pgsize - 1) & ~(pgsize - 1); if ((addr & (pgsize - 1)) || (len == 0) || !(flags & (MAP_SHARED | MAP_PRIVATE)) || ((flags & MAP_SHARED) && (flags & MAP_PRIVATE)) || (off0 & (pgsize - 1))) { ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):EINVAL\n", addr0, len0, prot, flags0, fd, off0); error = -EINVAL; goto out; } if ((flags & MAP_FIXED) && ((addr < region->user_start) || (region->user_end <= addr))) { ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):ENOMEM\n", addr0, len0, prot, flags0, fd, off0); error = -ENOMEM; goto out; } /* check not supported requests */ if ((flags & error_flags) || (flags & ~(supported_flags | ignored_flags))) { ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):unknown flags %x\n", addr0, len0, prot, flags0, fd, off0, (flags & ~(supported_flags | ignored_flags))); error = -EINVAL; goto out; } addr = do_mmap(addr, len, prot, flags, fd, off0); error = 0; out: dkprintf("sys_mmap(%lx,%lx,%x,%x,%d,%lx): %ld %lx\n", addr0, len0, prot, flags0, fd, off0, error, addr); return (!error)? addr: error; } SYSCALL_DECLARE(shmget) { const key_t key = ihk_mc_syscall_arg0(ctx); const size_t size = ihk_mc_syscall_arg1(ctx); const int shmflg0 = ihk_mc_syscall_arg2(ctx); int shmid = -EINVAL; int error; int shmflg = shmflg0; dkprintf("shmget(%#lx,%#lx,%#x)\n", key, size, shmflg0); if (shmflg & SHM_HUGETLB) { switch (shmflg & (0x3F << SHM_HUGE_SHIFT)) { case 0: shmflg |= SHM_HUGE_SECOND_BLOCK; /* default hugepage size */ break; case SHM_HUGE_SECOND_BLOCK: case SHM_HUGE_FIRST_BLOCK: break; default: error = -EINVAL; goto out; } } shmid = do_shmget(key, size, shmflg); error = 0; out: dkprintf("shmget(%#lx,%#lx,%#x): %d %d\n", key, size, shmflg0, error, shmid); return (error)?: shmid; } /* sys_shmget() */ void save_uctx(void *uctx, struct pt_regs *regs) { /* TODO: skeleton for UTI */ } /*** End of File ***/