rewrite page_fault_handler()

This commit is contained in:
NAKAMURA Gou
2013-08-08 12:43:00 +09:00
parent b0de24f13e
commit 480f6d4c2f
9 changed files with 738 additions and 87 deletions

View File

@@ -133,6 +133,8 @@ struct vm_range *next_process_memory_range(
struct process_vm *vm, struct vm_range *range);
struct vm_range *previous_process_memory_range(
struct process_vm *vm, struct vm_range *range);
int page_fault_process(struct process *proc, void *fault_addr, uint64_t reason);
int remove_process_region(struct process *proc,
unsigned long start, unsigned long end);
struct program_load_desc;

View File

@@ -143,72 +143,40 @@ static struct ihk_mc_interrupt_handler query_free_mem_handler = {
void sigsegv(void *);
static void page_fault_handler(unsigned long address, void *regs,
unsigned long rbp)
static void unhandled_page_fault(struct process *proc, void *fault_addr, void *regs)
{
struct vm_range *range, *next;
char found = 0;
const uintptr_t address = (uintptr_t)fault_addr;
struct process_vm *vm = proc->vm;
struct vm_range *range;
char found;
int irqflags;
unsigned long error = ((struct x86_regs *)regs)->error;
irqflags = kprintf_lock();
__kprintf("[%d] Page fault for 0x%lX, (rbp: 0x%lX)\n",
ihk_mc_get_processor_id(), address, rbp);
__kprintf("[%d] Page fault for 0x%lX\n",
ihk_mc_get_processor_id(), address);
__kprintf("%s for %s access in %s mode (reserved bit %s set), "
"it %s an instruction fetch\n",
(error & PF_PROT ? "protection fault" : "no page found"),
(error & PF_WRITE ? "write" : "read"),
(error & PF_USER ? "user" : "kernel"),
(error & PF_RSVD ? "was" : "wasn't"),
(error & PF_INSTR ? "was" : "wasn't"));
__kprintf("%s for %s access in %s mode (reserved bit %s set), it %s an instruction fetch\n",
(error & PF_PROT ? "protection fault" : "no page found"),
(error & PF_WRITE ? "write" : "read"),
(error & PF_USER ? "user" : "kernel"),
(error & PF_RSVD ? "was" : "wasn't"),
(error & PF_INSTR ? "was" : "wasn't"));
list_for_each_entry_safe(range, next,
&cpu_local_var(current)->vm->vm_range_list,
list) {
found = 0;
list_for_each_entry(range, &vm->vm_range_list, list) {
if (range->start <= address && range->end > address) {
__kprintf("address is in range, flag: 0x%X! \n", range->flag);
if(range->flag & VR_DEMAND_PAGING){
//allocate page for demand paging
__kprintf("demand paging\n");
void* pa = allocate_pages(1, IHK_MC_AP_CRITICAL);
if(!pa){
kprintf_unlock(irqflags);
panic("allocate_pages failed");
}
__kprintf("physical memory area obtained %lx\n", virt_to_phys(pa));
{
enum ihk_mc_pt_attribute flag = 0;
struct process *process = cpu_local_var(current);
unsigned long flags = ihk_mc_spinlock_lock(&process->vm->page_table_lock);
const enum ihk_mc_pt_attribute attr = flag | PTATTR_WRITABLE | PTATTR_USER | PTATTR_FOR_USER;
int rc = ihk_mc_pt_set_page(process->vm->page_table, (void*)(address & PAGE_MASK), virt_to_phys(pa), attr);
if(rc != 0) {
ihk_mc_spinlock_unlock(&process->vm->page_table_lock, flags);
__kprintf("ihk_mc_pt_set_page failed,rc=%d,%p,%lx,%08x\n", rc, (void*)(address & PAGE_MASK), virt_to_phys(pa), attr);
ihk_mc_pt_print_pte(process->vm->page_table, (void*)address);
goto fn_fail;
}
ihk_mc_spinlock_unlock(&process->vm->page_table_lock, flags);
__kprintf("update_process_page_table success\n");
}
kprintf_unlock(irqflags);
memset(pa, 0, PAGE_SIZE);
return;
}
found = 1;
ihk_mc_pt_print_pte(cpu_local_var(current)->vm->page_table,
(void*)address);
__kprintf("address is in range, flag: 0x%X! \n",
range->flag);
ihk_mc_pt_print_pte(vm->page_table, (void*)address);
break;
}
}
if (!found)
if (!found) {
__kprintf("address is out of range! \n");
}
fn_fail:
kprintf_unlock(irqflags);
/* TODO */
@@ -216,19 +184,44 @@ static void page_fault_handler(unsigned long address, void *regs,
#ifdef DEBUG_PRINT_MEM
{
const struct x86_regs *_regs = regs;
dkprintf("*rsp:%lx,*rsp+8:%lx,*rsp+16:%lx,*rsp+24:%lx,\n",
*((unsigned long*)_regs->rsp),
*((unsigned long*)_regs->rsp+8),
*((unsigned long*)_regs->rsp+16),
*((unsigned long*)_regs->rsp+24)
);
uint64_t *sp = (void *)REGS_GET_STACK_POINTER(regs);
kprintf("*rsp:%lx,*rsp+8:%lx,*rsp+16:%lx,*rsp+24:%lx,\n",
sp[0], sp[1], sp[2], sp[3]);
}
#endif
#if 0
panic("mem fault");
#endif
sigsegv(regs);
return;
}
//panic("mem fault");
static void page_fault_handler(void *fault_addr, uint64_t reason, void *regs)
{
struct process *proc = cpu_local_var(current);
int error;
dkprintf("[%d]page_fault_handler(%p,%lx,%p)\n",
ihk_mc_get_processor_id(), fault_addr, reason, regs);
error = page_fault_process(proc, fault_addr, reason);
if (error) {
kprintf("[%d]page_fault_handler(%p,%lx,%p):"
"fault proc failed. %d\n",
ihk_mc_get_processor_id(), fault_addr,
reason, regs, error);
unhandled_page_fault(proc, fault_addr, regs);
goto out;
}
error = 0;
out:
dkprintf("[%d]page_fault_handler(%p,%lx,%p): (%d)\n",
ihk_mc_get_processor_id(), fault_addr, reason,
regs, error);
return;
}
static void page_allocator_init(void)

View File

@@ -636,6 +636,209 @@ out:
return error;
}
static int page_fault_process_memory_range(struct process_vm *vm,
struct vm_range *range, uintptr_t fault_addr)
{
int error;
int npages;
void *virt = NULL;
void *ptepgaddr;
size_t ptepgsize;
int ptep2align;
void *pgaddr;
size_t pgsize;
int p2align;
uintptr_t phys;
enum ihk_mc_pt_attribute attr;
pte_t *ptep;
dkprintf("[%d]page_fault_process_memory_range(%p,%lx-%lx %lx,%lx)\n",
ihk_mc_get_processor_id(), vm, range->start,
range->end, range->flag, fault_addr);
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
/* (1) check PTE */
ptep = ihk_mc_pt_lookup_pte(vm->page_table, (void *)fault_addr,
&ptepgaddr, &ptepgsize, &ptep2align);
if (ptep && (*ptep != PTE_NULL)) {
if (!(*ptep & PF_PRESENT)) {
error = -EFAULT;
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):"
"disabled page. %d\n",
ihk_mc_get_processor_id(), vm,
range->start, range->end,
range->flag, fault_addr, error);
goto out;
}
error = 0;
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):already mapped. %d\n",
ihk_mc_get_processor_id(), vm, range->start,
range->end, range->flag, fault_addr, error);
goto out;
}
/* (2) select page size */
#ifdef USE_LARGE_PAGES
if (!ptep) {
/* get largest page size */
error = arch_get_smaller_page_size(NULL, -1, &ptepgsize, &ptep2align);
if (error) {
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):"
"get pgsize failed. %d\n",
ihk_mc_get_processor_id(), vm,
range->start, range->end,
range->flag, fault_addr, error);
goto out;
}
}
#else
if (!ptep || (ptepgsize != PAGE_SIZE)) {
ptep = NULL;
ptepgsize = PAGE_SIZE;
ptep2align = PAGE_P2ALIGN;
}
#endif
pgsize = ptepgsize;
p2align = ptep2align;
/* (3) get physical page */
for (;;) {
pgaddr = (void *)(fault_addr & ~(pgsize - 1));
if ((range->start <= (uintptr_t)pgaddr)
&& (((uintptr_t)pgaddr + pgsize) <= range->end)) {
npages = pgsize / PAGE_SIZE;
virt = ihk_mc_alloc_aligned_pages(npages, p2align,
IHK_MC_AP_NOWAIT);
if (virt) {
phys = virt_to_phys(virt);
memset(virt, 0, pgsize);
break;
}
}
/* (4) if failed, select smaller page size, and retry */
ptep = NULL;
error = arch_get_smaller_page_size(
vm, pgsize, &pgsize, &p2align);
if (error) {
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):"
"get pgsize failed. %d\n",
ihk_mc_get_processor_id(), vm,
range->start, range->end,
range->flag, fault_addr, error);
goto out;
}
}
/* (5) mapping */
attr = vrflag_to_ptattr(range->flag);
if (ptep) {
error = ihk_mc_pt_set_pte(vm->page_table, ptep, pgsize, phys, attr);
if (error) {
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):"
"set pte failed. %d\n",
ihk_mc_get_processor_id(), vm,
range->start, range->end,
range->flag, fault_addr, error);
goto out;
}
}
else {
error = ihk_mc_pt_set_range(vm->page_table, pgaddr,
pgaddr+pgsize, phys, attr);
if (error) {
kprintf("[%d]page_fault_process_memory_range"
"(%p,%lx-%lx %lx,%lx):"
"set range failed. %d\n",
ihk_mc_get_processor_id(), vm,
range->start, range->end,
range->flag, fault_addr, error);
goto out;
}
}
virt = NULL;
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (virt != NULL) {
ihk_mc_free_pages(virt, npages);
}
dkprintf("[%d]page_fault_process_memory_range(%p,%lx-%lx %lx,%lx): %d\n",
ihk_mc_get_processor_id(), vm, range->start,
range->end, range->flag, fault_addr, error);
return error;
}
int page_fault_process(struct process *proc, void *fault_addr0, uint64_t reason)
{
struct process_vm *vm = proc->vm;
int error;
const uintptr_t fault_addr = (uintptr_t)fault_addr0;
struct vm_range *range;
dkprintf("[%d]page_fault_process(%p,%lx,%lx)\n",
ihk_mc_get_processor_id(), proc, fault_addr0, reason);
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
/* NYI: page proctection fault */
if (reason & PF_PROT) {
error = -EFAULT;
kprintf("[%d]page_fault_process(%p,%lx,%lx):"
"protection fault. %d\n",
ihk_mc_get_processor_id(), proc,
fault_addr0, reason, error);
goto out;
}
range = lookup_process_memory_range(vm, fault_addr, fault_addr+1);
if (range == NULL) {
error = -EFAULT;
kprintf("[%d]page_fault_process(%p,%lx,%lx):"
"out of range. %d\n",
ihk_mc_get_processor_id(), proc,
fault_addr0, reason, error);
goto out;
}
if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE)
|| ((reason & PF_WRITE)
&& !(range->flag & VR_PROT_WRITE))) {
error = -EFAULT;
kprintf("[%d]page_fault_process(%p,%lx,%lx):"
"access denied. %d\n",
ihk_mc_get_processor_id(), proc,
fault_addr0, reason, error);
goto out;
}
error = page_fault_process_memory_range(vm, range, fault_addr);
if (error) {
kprintf("[%d]page_fault_process(%p,%lx,%lx):"
"fault range failed. %d\n",
ihk_mc_get_processor_id(), proc,
fault_addr0, reason, error);
goto out;
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
dkprintf("[%d]page_fault_process(%p,%lx,%lx): %d\n",
ihk_mc_get_processor_id(), proc, fault_addr0,
reason, error);
return error;
}
int init_process_stack(struct process *process, struct program_load_desc *pn,
int argc, char **argv,
int envc, char **env)