2025 ¥ - (FHEZigit52H)
ol 3] 5 4 <% BRI B S R o

L% N[
2026.1.19

(RISLRIRE) EHE R

LI S N B IRHEN TS DA R EK
(D RH A4 Q21emx29.7cm) HEEER, HEET, L NEARMAYTT
JOEEESN 3em; TRE KRG : FE5 /N4 5, BORIK, TSR EECT
A Times New Roman, 713017, #1736 F; TUHIFEIASFHN 2.5cm, TR ET
T, B, RN S SRRMEECTEM | FFEESRHE, BEAYw T,

(2) MEIEERZ ATIZIIPARE, FRETNRIK, F—Fhrd v 5h 4 5,

HRBPINENN 4 55 NEFSHE—FH— 7 <=0 7, B2R
e (=) 70« (Z) 7. , BB=RAHCL, 20 , B
< (D 0« Q) 7L, ilg RS,

(3) IESCHE., REFHIXFTFSEIHN 5 5,

ii

(Bt 5) el

Bx

L O N 4
2 T 4
B T R 4
A R T 4
A T 4
4.1 SRR R 2 S R g 4
4.1.2 B RIR T A B R A 5
4.1.3 B A o S R B 6

A T TR 6
S T 6
R4 o S g Y L o R 6
5.2 R R T 7
5.3 AN BB B BT Ll 8
6 B I: 2 B T) R T 9
T R 10

£3
[=]

Figure 1 8 M R) S R R I T 7
Figure 2 A[FZZ P BB AL (n=20) ... 7
Figure 3 “FIJIEALLLBEH BB n FUZAB4E .o 8
Figure 4 AFAU BB RV SE s bG 8
Figure 5 ANFEAITBRECT BE TR AT LL oo 9
Figure 6 ZHEEM: AFEAMEREIMS SEOT 9
Figure 7 ZEEM: AR EREISATIRIGTEL .o 10

(Bt 5) el

A% (Backtracking) #1432 FR57% (Branch and Bound) J&KRLH &1L 1k il i 1 9 A EE
FRE, BB IR A AR A, FIH BT A R EOE 0 TE RS R 73 X BRFENE
KHT BEARSe s E RIS, RN EEL (Bound) THHELS A LS (BRHR), PABIERA
ATREF AR R AR 7 3, MR R, AR SEE ERT fnEM L BEE R, ®A
HIX AP ELTE R R, RRRIR AU R B TN EIE M ERE A2 N, IR SR RIG T IATEMY
R~y GRS VRS S

2 LIEAR

RS FEEE AU TAA:

LB e, e EE S oy SR A EE

2. F SR RIS I RHE R) 70 ST AT A 1

3. M SCRRFHE TP AU e B HERA I, BT SR SUE Chal SRR XfEe, o
ANTEYZ GANAS Rl AR RS ABL R

4. Wit I e R AR AR s 8 (AP R A S A BB 05, ot KB CR 5t E
THH

5. (BYan B3t EH A, SEI SCRASEE, I AR B8 B PR g -

3 SCIEEER

HARZRANT

L DIYDRL AR n B NI, BEATLZE B CRE A

2. Gk AFIFEIRRISATI A V71 45 R AL

3. f# [Python £l #E 3%, RS RIS M4 R AR Baaite . LA RS
fIPEREXT L

4. PHTSRIRET R, WIEEAR .

A TR
4.1 Hixigit

4.1.1 T2 HEBRENSZRFE

T BBV ESTCRIR, £ RTES, BATEIRSZS RN, 9 1 F
TR, BAPRE AL MEERE (G0 R,

struct Item {
int id; int weight; int value;
double density; int limit;
Item(int id, int w, int v, int 1 = -1) : id(id), weight(w), value(v),
limit(l) {
density = (double)v / w;
}

(Bt 5) el

bool compareltems(const Item& a, const Item& b) {
return a.density > b.density;

}
BN RS ERNE V. SATER W, MEETEENYSZER level, FAMEH "X 73<
TR
L g EEHT M — 1, IRESEFN (level, W, + w;, Vo +v;)» HIFESREARE
2. E?Z% Kﬁﬁi?%%ﬁﬁ%& ’ %ﬁﬁ%}ﬁ?_ﬁﬁ:#@% ’ %@%%ﬁﬁ (level + 17 I/I/;:um ‘/cur)"

T HATER, BRAMFEITE YIS SN E LS (Upper Bound, UB), 5% UB<
current_best, WIBIEL, FRATSLIL T AT ERIEL

1AM (Simple Bound): 5 BRI ARA B4 H DL 4 R i K AL AME I TE -

UB=V,+ (W—-W,,) Times New Roman max (&)

w;
ZAHE R R, BB .
2. 7HE B (Fractional Bound): BIFRAER) 4 3 PR AL b 5o K780 4 2 8] F 0 £ A0 i)
R TR TS (RPOLSe e N R R, s — Ml %D . HTmcHT, %
FrRehe R A

double bound fractional(int level, int current val, int rem cap, const
vector<Item>& items) {
double bound = current_val;
int w = rem _cap;
for (int i = level; i < items.size(); ++i) {
if (w >= items[i].weight) {
// Take as many as possible (for complete knapsack fractional)
bound += (double)w * items[i].density;
return bound;
}
}

return bound;

}

4.1.2 R FRAEGRERMIIR

XTI A, B R A BLSCR, SR RIS 7T 1R8I BN LR A B (2R AN A
AUSs s, R B5S ¢ REE RN m,, WNZEARACRAIRAUAS THE N -

N =14+ mg+ mgm,; + mgmymy + ...

long long monte carlo estimate(const vector<Item>& items, int capacity, int
samples = 1000) {
long long total nodes = 0;
for (int k = 0; k < samples; ++k) {
long long current multiplier = 1;
// ... (traversal logic)
int branching factor = moves.size();
total nodes += current multiplier;
current multiplier *= branching factor;
/] ...

(Bt 5) el

return total nodes / samples;

}

IS 2 UCRHEBCTFE, ISR RMIRA WG T, EewumEt, BT oK1
LR (R TRIRAR), %7 TRREA R R REXERE

4.1.3 ZER BRSNS ZRAE

ZET MRS, MY RNEEARE k. RGN 5722 R0, B XNGESE
FEVIELEIRM, AL RS bE T AP AT BRI%K
1. A5 (Loose Bound): ZREE =R, MATEEET GRS HI.
2. BH5t (Tight Bound): 5 [E¥E REIKR M BCE W 8. BIEDULERTR, AMUZEHE
RG], W2YRESE kR

double bound mk tight(int level, int current val, int rem cap, const
vector<Item>& items) {
double bound = current_val;
int w = rem _cap;
for (int i = level; i < items.size(); ++i) {
if (items[i].weight == 0) continue;
int can_take weight = items[i].limit * items[i].weight;
if (w >= can_take weight) {

w -= can_take weight;
bound += items[i].value * items[i].limit;
} else {

bound += (double)w * items[i].density;
return bound;
b
}

return bound;

}

4.2 FRIRIFIR

. B{ERS: Linux

o GFEET: C++ (G++)

« $¥553#7: Python (Pandas, Seaborn, Matplotlib)
o BEPFIRLE: ArifE PC

5 LRERS IR

5.1 AT RB SRR T

1 R T REPD AR n 910, SEeE WIS R A RIS RIS S THE Ok
TN

(Bt 5) el

Monte Carlo Estimation of Search Tree Size

107

®
108 \
o

10°

104

Estimated Nodes (Log Scale)

10°

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Number of Item Types (n)

Figure 1: # 3% HLBEA0 S2 05 v £ 11

£ LA, TR MRURR n EHEEN K SRR T IARENS DORAE tH I LB S R 1T
IR T RELE TR TIPSR RS E SRS W TR W, 4 BRI, 22
WL PRS2 R IR T IATIM, # VB AU R4 SR A S R A 12

5.2 AT EERIE D i

N T IFEARGT R (B5D BIBTE, FTER 7RISR P& R B ES 2SI
HSpitE CEEaSHAPUCHHERE) WEE, ERESE 1, HAH_ESUEEL

Cost Function Approximation Ratio vs Level (n=20)

1.04

=
o
o

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Ratio (Bound / True Value)
o
©
©

0.96

0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16 17 18 19 20
Search Tree Level

Figure 2: A [RZ 2N BB HIIE AL (n=20)

(Bt 5) el

Average Cost Approximation Ratio vs Input Size
1.030 ®

1.025

=
o
o
=}

1.015

Average Ratio

1.010

°
1.005 \
. °

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Number of Item Types (n)

Figure 3: ~F-3J1 AL LU S A FUAR n 19324k

ME 2 FTLE, FEEEREERIEM (Level #K), RIRMBAAL /DN, 0TI
BT 1, U RSSOk, KR AU, FOVREEYMIRE RS, e
B, B3 R 7RIS n XFERERIEERIRZIN, WHEEO S, FEaitadEE, -
R n BRI, XRADEHE R AR RIS,

5.3 RENH T ERZLEINERERTLL
Al TR He T 538085 EL57 (Fractional)™ 5°Fb 38 51 (Simple) fE524: 15 IR I PERE

Nodes Visited: Fractional vs Simple Bound

method
—e— Fractional
Simple

__ 103
o
©
9]
w0
(o2
o
=
o]
9]
Jrr
o
> o
wn ’y o
% 102 /
= s

—

5.0 7.5 10.0 12.5 15.0 17.5 20.0 225 25.0
n

Figure 4: /AN [FACHY B& 2T 197 1) 45 s H00S B

(Bt 5) el

Execution Time: Fractional vs Simple Bound

method
g0 —e— Fractional
—eo— Simple
g 60
e
ot
b
o
o
E 40
]
£
'_
20
o s °
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
n
Figure 5: AN [RAAHT B8 5T (RI3Z 47 I H) 3 EE
LILR T

L BIRCUR: BB 5 (Practional) V7 in) &5 o/ T E A (Simple), A%
BANEEN GERE 4 IEERER . K2R R4t 7R B, iR
H BT RR TC RS 3

2. AT A RAESEHE ORI EEREE G TARS (FEREHF RV, AR
FAN TR WY — R, BT HARGRI BT R RE 7y, SIS AT IS R] ST R PR

IXUITE D SRSET, & — D EME A EE RS R Z0EE R ERFH.

6 MibN: ZSELBIRESH

EZER AN, BTN T8 s B R <« Z B (TightBound)” 5 2N & R
HIE<FASH S (LooseBound)”s

Multiple Knapsack: Nodes Visited Comparison

method
—e— TightBound

102 T LooseBound

Nodes Visited

6 8 10 12 14 16 18 20
n

Figure 6: 2 B ASFEAHY BRI 25 2 200 T

(Bt 5) el

Multiple Knapsack: Execution Time Comparison

B
o

method
—e— TightBound
—e— LooseBound

Time (microseconds)
= = N N w w
o [6,] o wu o w

o
5

©
o

6 8 10 12 14 16 18 20
n

Figure 7: Z ;AR B&EKIE AT I TR0 L

SRR, BES (TightBound) FEMERE EAL RIS, N BESEEIRHI = SR EFRIEK, T
TRA Y RRAR LS B IR ek B e (HL B i BB TR 0 S B TR AR R B RS R A £
FEAF, ATDARE RS RIENCR,

7 KRB

ASELEIEL LMo roe 2B A2 BT EREE T RIRE, [HEIN4EIE:

L AR BB S AU R B R B L B HE T 0 SR FHERI BT R R . SR
BB e s BRI EIT MR, EREFREZ0R > R A, MRS 5
IR e e

2. SRFRIB IR SEINE: AZTTVEREA RO KU S DAk i R AR g s 8] R, DR
IR PSRRI -

3. FSAEXTLE M.l DP SRR HSHAEXS b, Bk 170 SCPR TR R TR
TN, X6 1) g DG 88) A0 TR A A E A (R 1

10

	1 实验介绍
	2 实验内容
	3 实验要求
	4 实验步骤
	4.1 算法设计
	4.1.1 完全背包问题的分支限界法
	4.1.2 蒙特卡洛方法估算搜索树规模
	4.1.3 多重背包问题的分支限界法

	4.2 实验环境

	5 实验结果与分析
	5.1 蒙特卡洛搜索树规模估计
	5.2 代价函数准确性分析
	5.3 不同代价函数的性能对比

	6 附加：多重背包问题分析
	7 实验总结

