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3 SCIEEER

HARZRANT

L DIYDRL AR n B NI, BEATLZE B CRE A

2. Gk AFIFEIRRISATI A V71 45 R AL

3. f# [ Python £l #E 3%, RS RIS M4 R AR Baaite . LA RS
fIPEREXT L

4. PHTSRIRET R, WIEEAR .

A TR
4.1 Hixigit

4.1.1 T2 HEBRENSZRFE

T BBV ESTCRIR, £ RTES, BATEIRSZS RN, 9 1 F
TR, BAPRE AL MEERE (G0 R,

struct Item {
int id; int weight; int value;
double density; int limit;
Item(int id, int w, int v, int 1 = -1) : id(id), weight(w), value(v),
limit(l) {
density = (double)v / w;
}
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bool compareltems(const Item& a, const Item& b) {
return a.density > b.density;

}
BN RS ERNE V. SATER W, MEETEENYSZER level, FAMEH "X 73<
TR
L g EEHT M — 1, IRESEFN (level, W, + w;, Vo +v;)» HIFESREARE
2. E?Z% Kﬁﬁi?%%ﬁﬁ%& ’ %ﬁﬁ%}ﬁ?_ﬁﬁ:#@% ’ %@%%ﬁﬁ (level + 17 I/I/;:um ‘/cur)"

T HATER, BRAMFEITE YIS SN E LS (Upper Bound, UB), 5% UB<
current_best, WIBIEL, FRATSLIL T AT ERIEL

1AM (Simple Bound): 5 BRI ARA B4 H DL 4 R i K AL AME I TE -

UB=V,+ (W—-W,,) Times New Roman max (&)

w;
ZAHE R R, BB .
2. 7HE B (Fractional Bound): BIFRAER) 4 3 PR AL b 5o K780 4 2 8] F 0 £ A0 i)
R TR TS (RPOLSe e N R R, s — Ml %D . HTmcHT, %
FrRehe R A

double bound fractional(int level, int current val, int rem cap, const
vector<Item>& items) {
double bound = current_val;
int w = rem _cap;
for (int i = level; i < items.size(); ++i) {
if (w >= items[i].weight) {
// Take as many as possible (for complete knapsack fractional)
bound += (double)w * items[i].density;
return bound;
}
}

return bound;

}

4.1.2 R FRAEGRERMIIR

XTI A, B R A BLSCR, SR RIS 7T 1R8I BN LR A B (2R AN A
AUSs s, R B5S ¢ REE RN m,, WNZEARACRAIRAUAS THE N -

N =14+ mg+ mgm,; + mgmymy + ...

long long monte carlo estimate(const vector<Item>& items, int capacity, int
samples = 1000) {
long long total nodes = 0;
for (int k = 0; k < samples; ++k) {
long long current multiplier = 1;
// ... (traversal logic)
int branching factor = moves.size();
total nodes += current multiplier;
current multiplier *= branching factor;
/] ...
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return total nodes / samples;

}

IS 2 UCRHEBCTFE, ISR RMIRA WG T, EewumEt, BT oK1
LR (R TRIRAR), %7 TRREA R R REXERE

4.1.3 ZER BRSNS ZRAE

ZET MRS, MY RNEEARE k. RGN 5722 R0, B XNGESE
FEVIELEIRM, AL RS bE T AP AT BRI%K
1. A5 (Loose Bound): ZREE =R, MATEEET GRS HI.
2. BH5t (Tight Bound): 5 [E¥E REIKR M BCE W 8. BIEDULERTR, AMUZEHE
RG], W2YRESE kR

double bound mk tight(int level, int current val, int rem cap, const
vector<Item>& items) {
double bound = current_val;
int w = rem _cap;
for (int i = level; i < items.size(); ++i) {
if (items[i].weight == 0) continue;
int can_take weight = items[i].limit * items[i].weight;
if (w >= can_take weight) {

w -= can_take weight;
bound += items[i].value * items[i].limit;
} else {

bound += (double)w * items[i].density;
return bound;
b
}

return bound;

}

4.2 FRIRIFIR

. B{ERS: Linux

o GFEET: C++ (G++)

« $¥553#7: Python (Pandas, Seaborn, Matplotlib)
o BEPFIRLE: ArifE PC

5 LRERS IR

5.1 AT RB SRR T

1 R T REPD AR n 910, SEeE WIS R A RIS RIS S THE Ok
TN
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Monte Carlo Estimation of Search Tree Size
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Average Cost Approximation Ratio vs Input Size
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Execution Time: Fractional vs Simple Bound
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Multiple Knapsack: Execution Time Comparison
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