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《本科实验报告》填写说明

实验报告内容编排应符合以下要求：

（1）采用 A4（21cm×29.7cm）白色复印纸，单面黑字。上下左右各侧的页
边距均为 3cm；缺省文档网格：字号为小 4号，中文为宋体，英文和阿拉伯数字
为 Times New Roman，每页 30行，每行 36字；页脚距边界为 2.5cm，页码置于
页脚、居中，采用小 5号阿拉伯数字从 1开始连续编排，封面不编页码。

（2）报告正文最多可设四级标题，字体均为黑体，第一级标题字号为 4号，
其余各级标题为小 4号；标题序号第一级用“一、”、“二、”……，第二级
用“（一）”、“（二）” ……，第三级用“1.”、“2.” ……，第四级
用“（1）”、“（2）” ……，分别按序连续编排。

（3）正文插图、表格中的文字字号均为 5号。
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1 实验介绍

动态规划（Dynamic Programming, DP）是一种通过把原问题分解为相对简单的子问题的方

式来求解复杂问题的方法。它常用于优化问题，其中，问题的最优解可以通过子问题的最优解

来构造。本实验旨在深入理解动态规划算法在解决背包问题中的应用，特别是完全背包问题及

其优化，并通过实验数据分析不同实现方式的性能差异。

2 实验内容

本实验主要围绕动态规划算法解决完全背包问题展开，并涉及多重背包问题的初步分析。

具体内容包括：

1. 实现两种基于不同递推公式的完全背包动态规划算法。,

2. 对所实现的算法进行插桩，记录关键操作次数。,

3. 以物品种类数量 𝑛 为输入规模，通过大量随机测试样本，统计不同算法的平均运行时

间与关键操作次数。,

4. 改变物品种类规模 𝑛，对比分析不同规模下各算法的性能，并利用 Python 绘制数据图。,

5. 实现完全背包问题的一维数组空间优化版本，并与上述算法进行对比。,

6.（附加）对多重背包问题实现至少两种动态规划算法，并进行性能分析。,

3 实验要求

运用动态规划算法求解完全背包问题并进行分析，具体要求如下：

1. 针对完全背包问题，实现基于两种递推公式的动态规划算法。

2. 在代码中插桩，记录关键操作次数（如查表次数等）。

3. 以物品种类的大小 n为输入规模，固定 n，随机产生大量测试样本，统计两种算法的平

均运行时间和关键操作次数，并进行记录。

4. 改变物品种类规模，对不同规模问题各算法的结果对比分析，通过统计 python画图插

入到报告中记录，与理论值进行对照分析。

5. 使用一维数组的方式解决整数背包问题，并记录其平均运行时间和关键操作次数，与

上述两种算法进行对比。

附加：运用动态规划算法求解多重背包问题并进行分析，具体要求如下：

1. 多重背包即每种物品的数量有限，第 i种物品的数量上限为 ki个；

2. 对多重背包问题实现两种以上动态规划算法，并对其性能进行分析。

4 实验步骤  

4.1 算法设计  

4.1.1 完全背包算法一：朴素三重循环动态规划

该算法是完全背包问题的一种直观解法，其递推关系考虑了对每个物品  𝑖，我
们可以选择不取，或者取  𝑘 件，其中  𝑘 可以是  1 到容量允许的最大值。  设  

dp[𝑖][𝑗] 表示在前  𝑖 种物品中选择，背包容量为  𝑗 时的最大价值。  递推公式为： 

4



《算法设计与分析》实验报告

dp[𝑖][𝑗] = max(dp[𝑖 − 1][𝑗],max
𝑗
𝑤𝑖
𝑘=1(dp[𝑖 − 1][𝑗 − 𝑘 ⋅ 𝑤𝑖] + 𝑘 ⋅ 𝑣𝑖))

 其中 𝑤𝑖 和 𝑣𝑖 分别表示第 𝑖 种
物品的重量和价值。 该算法的时间复杂度为 𝑂(𝑛 ⋅ 𝑊 ⋅ ( 𝑊𝑤min))，其中 𝑛 为物品种类数，𝑊  为

背包容量，𝑤min 为物品的最小重量。

int complete_knapsack_v1(const std::vector<Item>& items, int capacity) {

    ops_count = 0;

    int n = items.size();

    if (n == 0) return 0;

    std::vector<std::vector<int>> dp(n + 1, std::vector<int>(capacity + 1, 0));

    for (int i = 1; i <= n; ++i) {

        int w = items[i - 1].weight;

        int v = items[i - 1].value;

        for (int j = 0; j <= capacity; ++j) {

            dp[i][j] = dp[i-1][j]; // Option to not take item i

            ops_count++;

            for (int k = 1; k * w <= j; ++k) {

                ops_count++;

                if (dp[i-1][j - k * w] + k * v > dp[i][j]) {

                    dp[i][j] = dp[i-1][j - k * w] + k * v;

                }

            }

        }

    }

    return dp[n][capacity];

}

代码 1: 完全背包算法一 C++ 实现

4.1.2 完全背包算法二：优化二维动态规划

该算法是完全背包问题更常用且更高效的二维动态规划解法。它利用了完全背包的特性：

在考虑第 𝑖 种物品时，如果选择放入该物品，那么接下来的决策仍然可以在包含第 𝑖 种物品的

集合中进行。 递推公式为： 
dp[𝑖][𝑗] = max(dp[𝑖 − 1][𝑗], dp[𝑖][𝑗 − 𝑤𝑖] + 𝑣𝑖)

 其中 dp[𝑖 − 1][𝑗] 表示
不选择第 𝑖 种物品的最大价值，而 dp[𝑖][𝑗 − 𝑤𝑖] + 𝑣𝑖 表示选择至少一件第 𝑖 种物品，并在剩余
容量 𝑗 − 𝑤𝑖 中继续考虑第 𝑖 种物品（以及之前的物品）。 该算法的时间复杂度为 𝑂(𝑛 ⋅ 𝑊)，空
间复杂度为 𝑂(𝑛 ⋅ 𝑊)。

int complete_knapsack_v2(const std::vector<Item>& items, int capacity) {

    ops_count = 0;

    int n = items.size();

    if (n == 0) return 0;

    std::vector<std::vector<int>> dp(n + 1, std::vector<int>(capacity + 1, 0));

    for (int i = 1; i <= n; ++i) {

        int w = items[i - 1].weight;

        int v = items[i - 1].value;

        for (int j = 0; j <= capacity; ++j) {

            ops_count++;

            if (j < w) {

                dp[i][j] = dp[i - 1][j];

            } else {
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                dp[i][j] = std::max(dp[i - 1][j], dp[i][j - w] + v);

            }

        }

    }

    return dp[n][capacity];

}

代码 2: 完全背包算法二 C++ 实现

4.1.3 完全背包算法三：空间优化一维动态规划

该算法是对算法二的空间优化版本，它将二维 dp 数组优化为一维 dp 数组。由于计算 

dp[𝑖][𝑗] 时只依赖于 dp[𝑖 − 1] 和 dp[𝑖] 自身（通过 dp[𝑗 − 𝑤𝑖]），因此可以通过在一维数组上正序

遍历容量来实现。 递推公式为： 
dp[𝑗] = max(dp[𝑗], dp[𝑗 − 𝑤𝑖] + 𝑣𝑖)

 该算法的时间复杂度仍为 

𝑂(𝑛 ⋅ 𝑊)，但空间复杂度优化为 𝑂(𝑊)，极大地节省了内存。

int complete_knapsack_v3(const std::vector<Item>& items, int capacity) {

    ops_count = 0;

    std::vector<int> dp(capacity + 1, 0);

    for (const auto& item : items) {

        for (int j = item.weight; j <= capacity; ++j) {

            ops_count++;

            dp[j] = std::max(dp[j], dp[j - item.weight] + item.value);

        }

    }

    return dp[capacity];

}

代码 3: 完全背包算法三 C++ 实现

4.2 实验环境与参数设置

本实验在 Linux 操作系统环境下进行，C++ 代码使用 GCC 编译器 (g++) 进行编译，并以 (-

O2) 级别进行优化。数据分析与绘图使用 Python 编程语言，依赖 pandas、matplotlib 和 seaborn 

等库。

实验中，我们固定背包容量 𝑊 = 100，并随机生成物品。物品的重量在 [1, 40] 范围内均匀
分布，价值在 [1, 100] 范围内均匀分布。为了消除随机性带来的误差，每个 𝑛 值（物品种类数）

进行 10 次独立实验，并取其平均运行时间及关键操作次数。物品种类数 𝑛 从 5 递增到 25，步
长为 5。

我们定义“关键操作次数”为动态规划表中状态值的更新或访问次数。具体在 C++ 代码中，

通过全局变量 (ops_count) 在每次 (dp) 数组赋值或比较时进行累加。

4.3 数据收集与可视化

实验数据由 C++ 程序 (knapsack) 收集。该程序在每次运行完一个算法后，将物品种类数 

𝑛、算法名称（v1、v2、v3）、平均运行时间（微秒）和平均关键操作次数输出到标准输出，并

重定向保存至 (results.csv) 文件。

Python 脚本 (plotter.py) 负责读取 (results.csv) 文件，使用 (matplotlib) 和 (seaborn) 库

生成两幅图表：
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1. 平均运行时间与物品种类数 𝑛 的关系图。

2. 平均关键操作次数与物品种类数 𝑛 的关系图，其中关键操作次数曲线采用对数坐标显

示以更好地展现数量级差异。

这些图表将直观地展示不同算法的性能随问题规模变化的趋势。

5 实验结果

本节展示了不同动态规划算法在解决完全背包问题时，其平均运行时间与关键操作次数

随物品种类数 𝑛 变化的实验结果。

Figure 1: 平均运行时间与物品种类数的关系

Figure 2: 平均关键操作次数与物品种类数的关系

从上述图表中，我们可以观察到以下趋势：

• 算法一 (Naive DP)：无论是在运行时间还是关键操作次数上，算法一都显著高于算法二

和算法三。其增长趋势与其理论分析的 𝑂(𝑛 ⋅ 𝑊 ⋅ ( 𝑊𝑤min)) 复杂度吻合，表明该方法在实
际应用中效率极低，尤其是在问题规模稍大时。
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• 算法二 (Optimized 2D DP)：算法二的运行时间和关键操作次数都呈现出与 𝑛 线性相关

的增长趋势，这与其理论时间复杂度 𝑂(𝑛 ⋅ 𝑊) 一致。与算法一相比，其性能有了大幅提
升。

• 算法三 (Space-Optimized 1D DP)：算法三在运行时间上与算法二表现相似，同样呈现

出与 𝑛 线性相关的增长。在关键操作次数上，它也与算法二保持一致的增长模式。这验

证了空间优化版本在不改变时间复杂度的前提下，能有效降低空间消耗。虽然理论上时

间复杂度相同，但由于内存访问模式的改变（更少的内存分配，更好的缓存局部性），在

某些情况下可能会有细微的性能提升，但在本实验的数据规模下，这种差异不明显。

总体而言，算法二和算法三在处理完全背包问题上表现出良好的可伸缩性，而算法三更是在空

间效率上具有优势。算法一作为一种直观但效率低下的实现，仅适合理解概念，不适用于实际

大规模问题。

6 实验总结

本实验通过实现和比较三种基于动态规划的完全背包算法，深入分析了不同递推关系和

优化策略对算法性能的影响。实验结果清晰地表明，算法一（朴素三重循环）由于其较高的复

杂性，在运行时间与关键操作次数上均表现出最差的性能，验证了其不适用于实际应用。

相比之下，算法二（优化二维动态规划）和算法三（空间优化一维动态规划）均展示出优

越的性能，其时间复杂度为 𝑂(𝑛 ⋅ 𝑊)，运行时间随问题规模 𝑛 呈线性增长。特别是算法三，在

保持与算法二相同时间复杂度的同时，将空间复杂度优化至 𝑂(𝑊)，这在处理大容量背包问题
时具有显著优势。

本次实验不仅加深了对动态规划解决完全背包问题的理解，也强调了算法设计中选择合

适的递推关系和进行空间优化的重要性。未来工作可以扩展到更复杂的背包问题，例如多重背

包的更高效实现（如二进制优化）及其在更大规模数据下的性能分析。
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7 附加：多重背包问题分析

7.1 多重背包算法一：朴素动态规划

多重背包问题与完全背包问题类似，但每种物品的数量是有限的。对于第 𝑖 种物品，其数
量上限为 𝑘𝑖 个。 设 dp[𝑖][𝑗] 表示在前 𝑖 种物品中选择，背包容量为 𝑗 时的最大价值。 递推公

式为： 

dp[𝑖][𝑗] = max0≤𝑐≤ min(𝑘𝑖, 𝑗𝑤𝑖)
(dp[𝑖 − 1][𝑗 − 𝑐 ⋅ 𝑤𝑖] + 𝑐 ⋅ 𝑣𝑖)

 其中 𝑤𝑖、𝑣𝑖、𝑘𝑖 分别表示第 𝑖 种
物品的重量、价值和数量上限，𝑐 表示选择第 𝑖 种物品的件数。 该算法的时间复杂度为 𝑂(𝑊 ⋅
sum 𝑘𝑖)，在最坏情况下，如果 𝑘𝑖 很大，其性能会接近完全背包的朴素解法。若 sum 𝑘𝑖 可以简
化为 𝐾max，则复杂度为 𝑂(𝑛 ⋅ 𝑊 ⋅ 𝐾max)。

// Algorithm for Multiple Knapsack (Direct DP)

int multiple_knapsack_v1(const std::vector<Item>& items, int capacity) {

    int n = items.size();

    if (n == 0) return 0;

    std::vector<std::vector<int>> dp(n + 1, std::vector<int>(capacity + 1, 0));

    for (int i = 1; i <= n; ++i) {

        int w = items[i - 1].weight;

        int v = items[i - 1].value;

        int k = items[i - 1].count; // Max count for this item

        for (int j = 0; j <= capacity; ++j) {

            dp[i][j] = dp[i-1][j];

            for (int c = 1; c <= k && c * w <= j; ++c) {

                dp[i][j] = std::max(dp[i][j], dp[i - 1][j - c * w] + c * v);

            }

        }

    }

    return dp[n][capacity];

}

代码 4: 多重背包算法一 C++ 实现

7.2 多重背包算法二：二进制优化

二进制优化是解决多重背包问题的一种高效方法。其核心思想是将每种数量有限的物

品拆分成若干件特殊的“物品”，使得这些特殊物品的组合可以表示原物品的任意数量。具体来

说，对于第 𝑖 种物品，如果其数量上限为 𝑘𝑖，我们可以将其拆分为重量和价值分别为 𝑐 ⋅ 𝑤𝑖 和 

𝑐 ⋅ 𝑣𝑖 的“物品”，其中 𝑐 取 1, 2, 4, dots, 2𝑝，以及剩余的 𝑘𝑖 − (2𝑝+1 − 1)。这些 𝑐 的和可以表示
从 1 到 𝑘𝑖 之间的任何一个整数。

拆分后，多重背包问题就转化为了一个 0/1 背包问题。我们可以使用 0/1 背包问题的标准

动态规划方法（如与完全背包算法三类似的一维 DP 优化）来解决。 转化后的物品总数将从 

sum 𝑘𝑖 减少到 sum log 𝑘𝑖，从而将时间复杂度优化为 𝑂(𝑊 ⋅ sum log 𝑘𝑖)。
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