1'I'%1‘ILW*§
y, NI S M T

KA TCP 5 QUIC WX PEREXT b #5256

= A R S FE 5t 7 =i 202302723005
B ogE Kk Al TR &S 25 2023

% N4 Mg TR A JB % Be RN
e AR JEEfHERA @1 i iz
S A 307-211 S8 I OJA] 2026.1.12

ERARHR K F R E I ZRERH

(RISLRIRE) EHE R

LI S N B IRHEN TS DA R EK
(D RH A4 Q21emx29.7cm) HEEER, HEET, L NEARMAYTT
JOEEESN 3em; TRE KRG : FE5 /N4 5, BORIK, TSR EECT
A Times New Roman, 713017, #1736 F; TUHIFEIASFHN 2.5cm, TR ET
T, B, RN S SRRMEECTEM | FFEESRHE, BEAYw T,

(2) MEIEERZ ATIZIIPARE, FRETNRIK, F—Fhrd v 5h 4 5,

HRBPINENN 4 55 NEFSHE—FH— 7 <=0 7, B2R
e (=) 70« (Z) 7. , BB=RAHCL, 20 , B
< (D 0« Q) 7L, ilg RS,

(3) IESCHE., REFHIXFTFSEIHN 5 5,

ii

CGHEPLMERD) S50

Bx

1

R R 4
Lo P 4
L2 T R 4
L3 G H R o 4
R L T T R e 5
2.1 TP MU B 5
2.2 QUIC H I B 5
B R T R 6
G A 7
30 S A T A 7
3L IR 7
R I 7
A IR 7
4.1.1 Tailscale BB Rt o B B 8
402 B 8
413 R T B 8
4.2 S TP B - IR s e R e 8
4.2.1 TCOP ARG B I 8
4.2.2 TP B U I 9
4,23 I B AT o 10
4.3 P QUIC B - AR 2 B R 11
4.3.1 QUIC BRGSAm TII 11
4.3.2 QUIC B S I 14
433 B B AT 16
A4 PRI 16
441 BRI 16
44,2 R R 19
R R 21
L A 21
52 M B 22

CGHEPLMERD) S50

1 SIS

1.1 SEIEAAE
AR VRS2 1 B P 2 0 BT TCP 5 QUIC PRI 5 PSS 22 5o S, 5 JERIMT
SR REMRAT S BI04y, BT BRI F

o BEAHAEST: AT TCP M QUIC HMs 73 il Sk B 2 7 - e 55 2 JE AR AR P« TCP A2 P A5 Al ARt

socket Zife, SCILEA P ER AL Ol RIS DIRE; QUIC F27 {4 H quiche g, SK
LT UDP W AT SEALAM I RE « N5 PP 10 5 2 58 I T 18 8 i 1 L RS2 80 7 i BB 6 L 56
AT JEL 3R 1] i 182) FE A T g

o PEREMGAESS: (EIEAIAESS SCHLR2EA b, SE AN PR BEXS Bt

1 BB RN L E TCP = IK¥EFF1 QUIC 0-RTT 7 HE 5 3L 1) 1] 22 7

2. L ENNR: EAFRME LT QEFHMEE. 5% EM. 100ms 2ER) X LR MY
A& S RE

3. ZEEE MR : XFE 5 > TCP EH: 5 A QUIC #E#: L 5 MNManifesttae, 7
it BA 3k BH 2E i) 5

4. 25 S A - AU X 285 v T i Pk R 13 s, R B R AP B R R RE) RNE BRI E
FEHE)

1.2 SELEER
AR S 1 LA 5 R et 3SR T

S TFAA HIE f T (F: AESTITFAART, o DA B4R C A A RAERE, FRAR TCR/IP HiX
BT AR IR, R TCP BRI =R T . AR, JERIHIBLAL, LA QUIC by
BUET UDP 9 FAL . %852 TUR O-RTT bbbt B, 74 socket SHFLAT quiche
BRI T, 7 AR 2 R M O

o SIOIEFE . FHESEIG R, SR TCP Al QUIC & 7 bifj- R 55 25 R 7 1 S I . FLAA b R4

$&: TCP #2718 H socket() bind(). listen(). accept() & API SEILAR 55 233, 4 H socket()-
connect()~ send() recv() 5 API SEHLZ 7 bifi; QUIC F2J7# F quiche & IEL & « EHE 5T
T AN B A e 1 SEEUIR S 2R ANE P oo RIS AEAS IR 2% 25 1 R AT I R, f
H tc 8% clumsy BB E B FIEIRIAEE, 0 FMWAEHE .

o SCIGLERUR: M55 TCP A QUIC sl iEREE 5, VEARHEA IR BLAE & 02 2

FIZRBL, 70 #r QUIC PR IIILAMA L, FFR TG SLI0 EORB G SR, RSk s
A 73 AT o

1.3 S8 H/Y

EBACRI K IR R, TCP WS A H B SRS, |3 B TR B S 2 5. 4R
T, Bl 2% B A 0 % AT R 7 Fi) B, TCP WS) 26 R PR Z 7 B B, A Sk B
FE . EIEATAEIR | YU T RS 1 . QUIC BMSUIE N H— BRI, S e X L
R, PR, BSR4 AR S .

MR AR, 5 UM IR N FLF TCP A1 QUIC P A% 4 b) AR BRI e s i, 9
WZ G AR RISEAT %, 28 S U 48 A Bk X 2% 20 M DR AT PERE I Bt FL AR H i 4

1 BT UEE: IRNEE TCP WM = k92 T MIZEIEH] . FEEHIPLH, L& QUIC
BT UDP HIfEHLE] . 2R M 0-RTT M AERIE R SR

CGHEPLMERD) S50

2. ERIWAEEA: HEIE Linux/Unix P55 T 1) socket gfEHAR, I H quiche FESZI
QUIC M, PEAEM 4 gt b (720 O HAIRB A S AR .

3. MERETRE . 2E 2 Wireshark. tc. clumsy %5 T 24T W48 HEREIR AN 4347,
BEE., E8. E0RGREIERIIFHIINE T X,

4. PR EE AT 3 SERRINEE, X EE 23 BT TCP A1 QUIC 7EA [F] 48 264 N B BE 22 ¢
Bl QUIC Frl LA AE 75

5. SREKAEIIRT . IR T SCHL P IR 7 - 55 R R Y, R S B R AT [e
RIVAETT, NGRS) B R IR N X 28 P SO 28 Gt B 5 A

ARSI AN X X 25 P BV I RAIE , B X DA 8 G R SR A S, %o T B A TR
WA = P R e ka3 B B2 .

2 RRRIB R AR

ARG @IS SCEE TCP A1 QUIC MRMEFIPIM I P s-AR S e e F, X bt el IER
[M2 25 R EIPERERR I, TCP (Transmission Control Protocol) J& BRI A CMERITIN, 2
AT SR, EMDEZR T T REHEIRS ; QUIC (Quick UDP Internet Connections) & Google &
HIEET UDP i —RAEHTY, STEMR TCP IRASKIHZE, R N7 JE IR S5 (AR,

2.1 TCP il I
TCP WIHRAERI R R O, SRAEATEEM . T e . TS H L %R % . TCP
P 3 B A

SR T TCP ERFEHE =K TR %/ i kik SYN 4, kg541E1 5 SYN-ACK
B, B R R ACK o IXAN I RE R R XU R HE 2 e e S 8, (HSIN T 270 1-RTT
BN AEIR . FERIEIR M, = IRARE T R RE A L R

FIEEAE S : TCP I P 215 « i NLE A AL L LB AT S ek DB WA A o5,
Bl W R HE 5 ik ACK B o R AIE Ty IS I 8] A RIS 21 ACK, U Hi A% it » 31X
ML DR 7 Bod i se B, (Hsgn 1 Il i B AP ERIER

PR TCP 8 AT 3h & DAL BT IR E R . SOy imidi@ & & 0o/ E RRIETT
HI TSR 000 s 38 S A3 T R DR SR T G IX i o T T R/ RRE R 4R 2
AR, SRR R] .

IHZESES]: TCP @ISR DI R IEH A, B PILSIHZE. & WA) kA
Reno. Cubic. BBR 5. 4Gl 2| EMES, TCP &R A LI AR HRLORI RIFHT, 2R
SPHEIN R GE TR o IXFPHLICRIIE 1 4% pIFe e Pk, (AR 175 & e IR B E B N Y
PERE .

PASKBHZE: TCP 2T F ML, Bt s e, wRENIEmEL, FodE
B ERFZ B EAL G A BT N R, XL R AR BN SLFH2E . 722 B8 5t
s BASKFHZE & P E PR R

A}, TCP R 8 M b #E) socket APL Sk WL . JIR 55 &% i @
o socket() v bind() v listen() - accept() SR ETITRNWTERTY, BX
O E HE, & 7 um dE i socket() « connect() AL EHE, [H send() -
recv() BEATECE ML . P ME A ESL vo BEA, WA T LI E .

CGHEPLMERD) S50

2.2 QUIC iR
QUIC Whis 22T UDP [fEHZE M, BEMEDE TCP (5 FR . QUIC [3 ELr .

O-RTT EALHIL: QUIC SCRFAEEFR LI AN FH e . WSR2 i 2 -5 R 55 4% i 5L
RERE, AT AZAF IR S5 S BCES B, EEPERRIN B IEEE, KB 0-RTT Mk
SEHEIR o IXAHEE TCP [=k T~ 535 P IR 1 IEREE SL I 1)

Z %5 M QUIC fE BB ESCFF 2 MMST IR (Stream) o BN AT AMOSTAR EE, —
MR EBA S AR5, ATTE SR T TCP RIBA KB 2E 1)@, JX%F T HTTP/2 5
Z i E IO E

BHGTH: QUIC i Hl&E+e ID A Z U yed CJE 1P, Wism . HEIP. H 8%) bRl
B, Rk 7 i 4 1P Huhk 8l AR AN 2 S BOEHE P X STRAS BB % A2 R 28 D) H O/
FRERE, P 7Bl R P AR

NEMZ: QUIC PMYANE T TLS 1.3 %, Fra¥dh e &L, e 7 2atk.
5 TCP + TLS #HLL, QUIC y/b THRFIIR, MK 7 IEEE LR,

RGO ZE . QUIC ST RF 2 M Ze 45| vk, I BT DAAEIZ AT I D)4 o AR VR S50 48
Reno ik, 5 TCP WSLBLLRIF—2, (HT A XTI,

AR SEE F, QUIC #2 ¥ ff H Cloudflare) quiche & SZHL . Ak 55 #% v € 2
UDP socket, AL & QUIC Z# (iEH. ZH., MHM . WERHE), Wi
i O &R, FAmAlE QUIC EH, @ /FE i kiEHHE. &
FeAE AR PR 28 O BE AL, ol 1 AR il HL AL 3RO g%, DR AR R .

2.3 thaEMIA S 5
ARRSEHB T 2RI MR A5 BER He TCP A QUIC [y 2252 -

ST TR : % F Wireshark f# 3% TCP Al QUIC HEREEE ST, i i K
IR — N3 58 R T RO A] . TCP & M SYN F| ACK [], QUIC & M ClientHello
FIPRF5E M) . BRI 3 Kk, THECEIAME.

Bk B AR 1B OO S K SO S T g (100MB FEALELHE), 7EAS [WX 4% 2644 F k&
i

« IEEMZ: LEA. TR

o %@,W?@ 1@% tc gqdisc add dev eth@ root netem loss 5% *ﬁw\ 5% %@,i

o WEIRNZ% . fFH] tc qdisc add dev eth® root netem delay 100ms AL 100ms ZEIR

THEIEXS LU PR PP ik (MB/s), 70T 2 B AISE IR X L BE 2 .

Z B FMEREINR . Bt Z AR, FINEST 5 4> TCP ERALMEIE (RN ERE L
20MB), TEHAS QUIC ¥EH: R 7 5 MiALmsds (RN mALS 20MB) o & FEXT LL i Fof
J7 S B AR TR], 4T QUIC £ 8% & F ifn] fil vk TCP 1) BA ks FHL2E 1] i,

0 5% e P K AR 2% rh T JE VR R) 3 5% -

- BESLIERI T IR A

. 1@)5@ tc gqdisc add dev eth@ root netem loss 100% *ﬁ?ﬁ@?ﬁﬁpﬁ‘ﬁ
. 30 FPJE{HH tc qdisc del dev ethe root k& M 4%

- O0F EE PR A BN ER T SR BE J) ANE e B A

X QUIC WIEBGERE AES1, AR AL A o o2 2 7 i 1) TP bk i 1, MU 15 R
FRIEW

—_

=W N

CGHEPLMERD) S50

WK I BT . SC I fl A Tailscale JiE #L 3 W, W & F ML @ 1L Tailscale &
B, A BELHINERE. — 6 EHEITR B — a8
Wlig 17 % 7 o f2 7, 1% % 100MB % 4 , i X & Y B R R & M & .

3 SCIRIFIR
3.1 LRISF ST

2y i A5 BRRA

BIE RS Linux 6.18.6-2-cachyos

Tailscale Tailscale J&) J5 15k XX

AT AR S GCC
T H Make
Wireshark Wireshark 4.6.3

3.1.1 MEFIRIE
ARSI PR A R PR B A 46 DL LA

- #ERS: Linux 6.18.6-2-cachyos, FRHEAIEKITKFIZBITHEL. P& FHLIEL Tailscale
BT DL R N R, AT, FL SR 4 AR

o FPEAS: GCC, 3CHF C99 #nifE, H T-9wiF TCP #1 QUIC #£/7 .
o WMET H: Make, W T &M FTME, FilbmiFdmd.

. R4
» TCP 271 F#r#E POSIX socket API (<sys/socket.h> « <arpa/inet.h> 2§)
» QUIC #2/7{# F Cloudflare [f] quiche &£ (<quiche.h>), #2f QUIC ¥l CEFH N

o LSBT T H
» tc (Traffic Control): Linux WIZIMEEH T, HTEBIER. MRS KM:
» clumsy : Windows -5 N2 BB T B, Thaes tc 281
« AT H: Wireshark 4.6.3, MZEHaHr TR, HTH3RFHr 2 a0, BeE Bl
SELR IR, DU NN (A
o TR OpenSSL A % QUIC WM Fr 75 1 TLS WE S AIFAEH (cert.crt « cert.key Do
o AR CRREE SRS g AS, F T g S AR A .
TR AR E @R, W %3 GCC. Make Ml quiche J% BJ o] JF 45 JF & - quiche
FEidit Rust A C B FHD, FEMAERK T ZH Rust M Cargo.
A SEES A Linux 388 R 56 B K, {8 A Tailscale # 2 B L /I MW, W&
FEHLH P HbE 4> N 1ee.115.45.1 (R 55 %%) A1 1ee.115.45.2 (& N D o

4 RGP TR

CGHEPLMERD) S50

4.1 FIEE0E

4.1.1 Tailscale EE¥\EIMECE
SEIG A% FH Tailscale 57 i 400 R38N IE 2 5 ML Tailscale & —Fi2E T WireGuard] VPN
RR%%, BEWS TR NAT, HALZ4)sxt fidEd. iELPERMT:

. FEP & EAL L2 3% Tailscale 77 Ui

. il sudo tailscale up 7% &>k Tailscale K5

A tailscale ip -4 A EE LI IP ikt

CEERSZENIP N 100.115.45.1, F ' EHLIP N 100.115.45.2

Tailscale $2 4t T F2 € B 28 4%, SCHF UDP 1 TCP #9186 A S0 1 9 2% AR5 K

4.1.2 IEBERK
QUIC WM 75 2 TLS WE BT N % A& %i. 11 OpenSSL A= Bl A 244 1UE 1

= W DN =

openssl req -x509 -newkey rsa:4096 -keyout cert.key -out cert.crt -days 365 -nodes

AR cert.crt Al cert.key SCAHFFT QUIC ARS8 A%/ i ¥ TLS 48 F

4.1.3 MR E
fEH tc fr R ERAER A

Bl 5% EEE
sudo tc qdisc add dev tailscale® root netem loss 5%

il 100ms ZEIR
sudo tc qdisc add dev tailscale@ root netem delay 1@@ms

PRSI 4%
sudo tc qdisc del dev tailscale® root

VER: tailscalee #& Tailscale MM 483z 4 HK, SZbrfl I 75 EARME RS0 & 7%
4.2 LI TCP EFin-IRSB{/IERF

4.2.1 TCP PRS2}
TCP RS- 2448 FIbR#fE socket API S2H, FEAZIRINT .

BB ERT: {HH socket(AF_INET, SOCK_STREAM, @) fIJ% TCP B+ .

if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);

i .] bind() BERETIERTE €U (8080), ¥ H SO _REUSEADDR 18T 0 ¥k
WE .

CGHEPLMERD) S50

if (setsockopt(server_fd, SOL_SOCKET, SO _REUSEADDR | SO_REUSEPORT, &opt,
sizeof(opt))) {

perror("setsockopt");

exit(EXIT_FAILURE);

}

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(PORT);

if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);

HITIER:: (M 1isten() JHIRMENTE P imiEdE, BAIIKEBEN 3.

if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);

BLER: M accept() R ImIERE, REIHERET M TEE

if ((new_socket = accept(server_fd, (struct sockaddr *)&address,
(socklen_t*)&addrlen)) < 0) {

perror("accept");

exit(EXIT_FAILURE);

B A read() FRWCE M ImAOR NI, FTEIECRIR) TR A A

int valread = read(new_socket, buffer, BUFFER_SIZE);
if (valread > @) {
printf("Received %d bytes: %s\n", valread, buffer);

}
FIEWIN: AR send() A%/ S A IE M N, A5 BRI B A BdE I L

char response[BUFFER_SIZE];
snprintf(response, BUFFER_SIZE, "Server received %d bytes", valread);
send(new_socket, response, strlen(response), 9);

KRBT BEEMRE, KR mEE T NIRSSaE% T, B,

close(new_socket);
close(server_fd);

4.2.2 TCP EPimEI
TCP & i) 2D R .

CGHEPLMERD) S50

BEEET: {FH socket(AF_INET, SOCK_STREAM, @) f% TCP B4+,

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("\n Socket creation error \n");
return -1;

M Bk S5 At BEE RS AR IP HhE A 5

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PORT);

if (inet_pton(AF_INET, SERVER_IP, &serv_addr.sin_addr) <= 0) {
printf("\nInvalid address/ Address not supported \n");
return -1;

FESLHEE: M connect() HEIEFIARSS A, filk TCP =IXIE T

if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
printf("\nConnection Failed \n");
return -1;

RIEHE: HH send() MRS 28 RIEH S .

send(sock, hello, strlen(hello), 9);
printf("Message sent to server: %s\n", hello);

B A read() IR S 8 (K0 B

int valread = read(sock, buffer, BUFFER_SIZE);
if (valread > @) {
printf("Server response: %s\n", buffer);

}
KRBT EETEMRE, RHEET.

close(sock);

423 RiF5IBIT
1 F Make %1% TCP 2%

make tcp_server tcp_client

IBAT AR S5 A5 A2 i -

10

CGHEPLMERD) S50

JRS5
./tcp_server

& i
./tcp_client

A 55 e A -

TCP Server listening on port 8080...
Client connected.

Received 22 bytes: Hello from TCP Client
Response sent to client.

B i

Message sent to server: Hello from TCP Client
Server response: Server received 22 bytes

4.3 2 QUIC EPi-IREZSBIEF

4.3.1 QUIC PR3 235LIR
QUIC AR %5 #3 M8 H quiche FESZEL, EELHRUIT:

A QUIC ML : #I4A1k quiche BEEX R, BEIET. o, BMAWL. FIRHIESE.

quiche_config *config = quiche_config new(QUICHE_PROTOCOL_VERSION);
if (config == NULL) {

fprintf(stderr, "failed to create config\n");

return -1;

}

if (quiche_config load_cert_chain_from_pem_file(config, "cert.crt") < @) {
fprintf(stderr, "failed to load certificate chain\n");
return -1;

}

if (quiche_config load_priv_key from_pem file(config, "cert.key") < @) {
fprintf(stderr, "failed to load private key\n");
return -1;

}

quiche_config set_application_protos(config, (uint8_t *) "\x@ahg-
interop\x@5hq-29\x05hq-28\x05hq-27\x08http/0.9", 38);
quiche_config_set_max_idle_timeout(config, 56000);
quiche_config set max_recv_udp payload size(config, MAX_DATAGRAM_SIZE);
quiche config set max_send udp payload size(config, MAX_DATAGRAM_SIZE);
quiche_config set_initial max_data(config, 10000000);
quiche_config_set_initial max_stream_data_bidi_local(config, 1000000);
quiche_config_set_initial_max_stream_data_bidi_remote(config, 1000000);
quiche_config set_initial max_streams_bidi(config, 100);

quiche_config set_cc_algorithm(config, QUICHE_CC_RENO);

11

CGHEPLMERD) S50

B UDP B3 {81 socket(AF_INET, SOCK_DGRAM, 0) fil% UDP B, 45E 18 & i
H (8888),

struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(8888);
sa.sin_addr.s_addr = INADDR_ANY;

int sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < @) {

perror("socket");

return -1;

}

if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
perror("bind");
return -1;

WEAPIEE N,] font1() WEERTAIMHER, B0 B,

int flags = fcntl(sock, F_GETFL, 0);
fcntl(sock, F_SETFL, flags | O_NONBLOCK);

TAEAAEE . EOEA AW UDP a0, M QUIC Skiffl, G BERIERN R, AL
TR, AR,

while (1) {

struct sockaddr_storage peer_addr;

socklen_t peer_addr_len = sizeof(peer_addr);

ssize t read_len = recvfrom(sock, buf, sizeof(buf), 0, (struct sockaddr
*)&peer_addr, &peer_addr_len);

if (read_len < 0) {
if (errno != EWOULDBLOCK && errno != EAGAIN) {
perror("recvfrom");
break;
}
} else {
// fENT QUIC kil
uint8_t type;
uint32_t version;
uint8 t scid[QUICHE_MAX_CONN_ID LEN];
size t scid_len = sizeof(scid);
uint8_t dcid[QUICHE_MAX_CONN_ID_ LEN];
size t dcid_len = sizeof(dcid);
uint8 t token[256];
size_t token_len = sizeof(token);

int rc = quiche_header_info(buf, read_len, LOCAL_CONN_ID_ LEN, &version,
&type, scid, &scid_len, dcid, &dcid_len, token, &token_len);

if (rc >= 0) {
if (client == NULL) {

12

CGHEPLMERD) S50

/] BT

client = malloc(sizeof(Client));
client->sock = sock;

client->peer_addr = peer_addr;
client->peer_addr_len = peer_addr_len;

uint8 t server_scid[QUICHE_MAX_CONN_ID_ LEN];

int rng = open("/dev/urandom”, O_RDONLY);

if (rng >= 0) {
read(rng, server_scid, sizeof(server_scid));
close(rng);

}

client->conn = quiche_accept(server_scid, sizeof(server_scid),
dcid, dcid_len, (struct sockaddr *)&sa, sizeof(sa), (struct sockaddr *)&peer_addr,
peer_addr_len, config);

printf("New connection accepted.\n");

}

if (client != NULL) {
quiche_conn_recv(client->conn, buf, read_len, &(quiche_recv_info){
.to = (struct sockaddr *)&sa,
.to_len = sizeof(sa),
.from = (struct sockaddr *)&peer_addr,
.from_len = peer_addr_len,

})s

}

if (client != NULL) {
/] RCERCEENT I R

quiche_conn *conn = client->conn;

if (quiche_conn_is_closed(conn)) {
printf("Connection closed.\n");
quiche_conn_free(conn);

free(client);
client = NULL;
break;

}

if (quiche_conn_is_established(conn)) {
/] R
uinte4_t s = 0;
quiche_stream_iter *readable = quiche conn_readable(conn);
while (quiche_stream_iter_next(readable, &s)) {
uint8_t recv_buf[1024];
bool fin = false;
uinté4 t err_code = 0;
ssize_t recv_bytes = quiche_conn_stream_recv(conn, s, recv_buf,
sizeof(recv_buf), &fin, &err_code);
if (recv_bytes > 0) {
printf("Received %zd bytes on stream %lu: %.*s\n", recv_bytes,
s, (int)recv_bytes, recv_buf);
char resp[1200];
snprintf(resp, sizeof(resp), "Server received: %.*s",

13

CGHEPLMERD) S50

(int)recv_bytes, recv_buf);
quiche_conn_stream_send(conn, s, (uint8_t*)resp, strlen(resp),
true, &err_code);
}
}

quiche_stream_iter_free(readable);

}

/] RIESR
while (1) {
quiche_send_info send_info;
ssize t written = quiche_conn_send(conn, out, sizeof(out), &send_info);
if (written == QUICHE_ERR_DONE) break;
if (written < @) break;
sendto(sock, out, written, 0, (struct sockaddr *)&send_info.to,
send_info.to_len);

}
quiche_conn_on_timeout(conn);
}
usleep(1000);

4.3.2 QUIC ER iR
QUIC & J i i) E BRI R -

G QUIC FL & : 441k quiche BEEX R, ZEHIXAFIEBIIE (AZLIUET).

quiche_config *config = quiche_config new(QUICHE_PROTOCOL_VERSION);
if (config == NULL) return -1;

quiche_config verify_peer(config, false);

quiche_config set_application_protos(config, (uint8_t *) "\x@ahg-
interop\x@5hq-29\x05hq-28\x05hq-27\x08http/0.9", 38);
quiche_config_set_max_idle_timeout(config, 56000);
quiche_config set _max_recv_udp_payload size(config, MAX_DATAGRAM_SIZE);
quiche_config set _max_send udp _payload size(config, MAX_DATAGRAM_SIZE);
quiche_config set_initial max_data(config, 10000000);

quiche_config set_initial max_stream_data_bidi_local(config, 1000000);
quiche_config set_initial max_streams_bidi(config, 100);

A1 UDP E#:5: 6 UDP B GRS 45 .

int sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < @) return -1;

struct sockaddr_in peer_addr;

memset(&peer_addr, 0, sizeof(peer_addr));
peer_addr.sin_family = AF_INET;

peer_addr.sin_port = htons(8888);

inet pton(AF_INET, "127.0.0.1", &peer_addr.sin_addr);

if (connect(sock, (struct sockaddr *)&peer_addr, sizeof(peer_addr)) < 0) {
perror("connect");

14

CGHEPLMERD) S50

return -1;

el QUIC Rz {1 quiche_connect() EIZE QUIC X 4.

uint8_t scid[QUICHE_MAX_CONN_ID LEN];
int rng = open("/dev/urandom", O_RDONLY);
if (rng >= 0) {
read(rng, scid, sizeof(scid));
close(rng);

}

quiche_conn *conn = quiche_connect("127.0.0.1", (const uint8_t *)scid,
sizeof(scid), (struct sockaddr *)&local_addr, local_addr_len, (struct sockaddr
*)&peer_addr, sizeof(peer_addr), config);
if (conn == NULL) {

fprintf(stderr, "quiche_connect failed\n");

return -1;

FAGFIALRE: WS AR B, ACFREE, AOETER, R

while (1) {
ssize_t read_len = recv(sock, buf, sizeof(buf), 0);
if (read_len > 0) {
quiche_conn_recv(conn, buf, read_len, &(quiche_recv_info){
.to = (struct sockaddr *)&local_addr,
.to_len = local_addr_len,
.from = (struct sockaddr *)&peer_addr,
.from_len = sizeof(peer_addr),
1
¥

if (quiche_conn_is_closed(conn)) {
printf("Connection closed.\n");
break;

}

if (quiche_conn_is_established(conn)) {
if (!reqg_sent) {
const char *msg = "Hello from QUIC Client!";
uinté4_t err_code = 0;
quiche_conn_stream_send(conn, 4, (uint8_t*)msg, strlen(msg), true,
&err_code);
printf("Sent: %s\n", msg);
reg_sent = true;

}

uinted t s = 0;
quiche_stream_iter *readable = quiche_conn_readable(conn);
while (quiche_stream_iter_next(readable, &s)) {

uint8 t recv_buf[1024];

bool fin = false;

uinté4_t err_code = 0;

ssize t len = quiche_conn_stream_recv(conn, s, recv_buf,

15

CGHEPLMERD) S50

sizeof(recv_buf), &fin, &err_code);
if (len > @) {
printf("Received: %.*s\n", (int)len, recv_buf);
quiche_conn_close(conn, true, @, (const uint8 t *)"Done", 4);

}
}

quiche_stream_iter_free(readable);

}

while (1) {
quiche_send_info send_info;
ssize t written = quiche conn_send(conn, out, sizeof(out), &send_info);
if (written == QUICHE_ERR_DONE) break;
if (written < @) break;
send(sock, out, written, 0);

}

quiche_conn_on_timeout(conn);
usleep(1000);

433 RiF5IBIT
i F Make %1% QUIC 2% :

make quic_server quic_client
IBAT IR S5 A% A2 i -

RS
./quic_server
%) i
./quic_client

J 55wt

QUIC Server listening on port 8888

New connection accepted.

Received 22 bytes on stream 4: Hello from QUIC Client!
Connection closed.

P i

Connecting to QUIC server...

Sent: Hello from QUIC Client!

Received: Server received: Hello from QUIC Client!
Connection closed.

4.4 ¥ gEMK
4.4.1 FEE MK

16

CGHEPLMERD) S50

Bt TCP #1 QUIC /7, SEIL KL IIAe. TCP B P tcp_perf_server
tep_perf_client , QUIC F2/F M quic_perf server Fll quic_perf client o

TCP PEREMA MRS 2% U 100MB uds, F 5 AL iy [FI 75 &

long long total_bytes = 0;

int valread;

struct timespec start, end;

clock gettime(CLOCK_MONOTONIC, &start);

while ((valread = read(new_socket, buffer, BUFFER_SIZE)) > 0) {
total_bytes += valread;

}
clock_gettime(CLOCK_MONOTONIC, &end);

double time_taken = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) /
1e9;

double mb = total_bytes / (1024.0 * 1024.0);

double throughput = mb / time_taken;

printf("Received %.2f MB in %.2f seconds.\n", mb, time_taken);
printf("Throughput: %.2f MB/s\n", throughput);

TCP HREMRE P iti: K% 100MB 4 .

long long bytes_to_send = TARGET_MB * 1024 * 1024;
long long bytes_sent = 0;

while (bytes_sent < bytes_to_send) {

int to_send = (bytes_to_send - bytes_sent > BUFFER_SIZE) ? BUFFER_SIZE :
(bytes_to_send - bytes_sent);

send(sock, buffer, to_send, 90);

bytes_sent += to_send;

QUIC PEAEMIA R S5 & A i SRAUSEIL, AT QUIC Jif& FrH s -
A 28 A8 TN 4G R -

TCP Performance Server listening on port 8081...
Client connected. Receiving data...

Received 100.00 MB in 47.51 seconds.

Throughput: 2.10 MB/s

QUIC Performance Server listening on port 8889
New performance connection accepted.

Received 100.00 MB in 50.12 seconds.
Throughput: 2.00 MB/s

Connection closed.

IEH ML T QUIC PERERSAR T TCP) JE K 70 -

17

A

CGHEPLMERD) S50

MIIREE AT U, EIER IS N (EEE. LIEIR), TCP ItEit 6] 47.51 7,
FHHEEA 2.10 MB/s; 1] QUIC HfEHRS a4y 50.12 #2, k&l 2.00 MB/s, QUIC {& 4
FfIEILE TCP £ 14 2.6 #b. IX—I %5 QUIC 7E& % WIS T AL e R BE il b, J
JER PR AT BAA LA TR JUAN T3 TH 04T -

1.

PR IR E 2 5% TCP WS) L, A Sk BT AR /N (20 779D, HAERIER SN
e SeBL, admEAL. 1 QUIC MR %, Rl B m EAA R INE E
L, OEE D HEE, SKETHE R,

- INEFFR: QUIC B T TLS 1.3 %, T BUR B F N s/ R & ab B . TCP A5 A

nes, SR T EINEE BN TLS 2. fEIEH KIS, IS i BT 44 2 B
BARME IR

FP 35 vs WIZASSEIL: TCP fE1RIE RGN AZ P SEBL, W] DUE IS M 2%k, il 78y
Pett. QUIC T UDP, fEM /2SI Gl quiche), K 7 BAEH 7 S MA S
Z ISR e, IR LR SO RSN P RET 4 -

ERESIHLH . BARSEIGH BT T QUIC [Retry ML A /D> — X M 25431, {H QUIC
FIMI UG R ST PR EE TCP 4 4% . TCP i F {4 %) SYN — SYN-ACK — ACK =X
J2F, 1M QUIC T 5EAL TLS 1.3 #2F, {945 ClientHello. ServerHello. Finished %%

a1k
MPIR,

- INZEIE SR AL . TCP I ZE42] 9% (N Cubic) fE AR AR5 R, #1x

Bl 437 SR it . QUIC 15 FH 1) A& FH P A 52 B Reno 553%, AR SF HARLFE
JE AU TCP.

SEPLAN T RS . QUIC {3 AERH % 170 At HIHLE] (EFEIA AT usleep(1000)), T
B E AL EE . TCP I P28 X 170, #:1E RGN % B sh b 3R E A5 5, AT =
QUIC it W5 EF B E BRVIRAS . EEARESE, W1 CPU 4.

P dT: FEIEH ML T, QUIC Lk TCP 8- IEHWIE, FEFEHNZERE. H
JFUASSEDL INEIT RIS R . QUIC MRS L BB G 5 MM CGRsEiR . mZEt) M
TR 2 A M ORI R R, AR AR EAR 1 IR W48 A58 N 1B SRR &
M, XKL T QUIC FRX A BETT HbR: FEORSF RAFIERERIFINS, SR 0L LF (4538 N
PERI DI RERFE -

1 F Wireshark #IV T 243k TCP A1 QUIC I ALt #2, T AN %2 21 5 A ip 3R i SC
¥ AL R . NIRRT Wireshark JVE FHHT, 7] LA 3] TCP A1 QUIC B i $ds .

18

CGHEPLMERD) S50

[N] tcpquic.pcapng

MHF) RIEE) MEV) BHRG) RO HiTA) HHS) EBIEY) FLW) TIRM #EH)

ADAG® PEEE 2 <> >k YHEE QQEm

Destination Protocol Length Info
74 51836 — 8080 [SYN] Seq=0 Win=65495 Len=0 MSS=65495 SACK_PERM TSval=3309365173 TSecr=0 WS=2048
74 8080 - 51836 [SYN, ACK] Seq=0 Ack=1 Win=65483 Len=0 MSS=65495 SACK_PERM TSval= 3 TSecr=330
3/0.000041427 .0.0. .0.0. 66 51836 — 8080 [ACK] Seq=1 Ack=1 Win=65536 Len=0 TSval=3309365173 TSecr=3309365173
4/0.000064313 .0.0. .0.0. 87 51836 — 8080 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=21 TSval=3309365173 TSecr=33093651
5/0.000072166 .0.0. .0.0. 66 8080 - 51836 [ACK] Seq=1 Ack=22 Win=65536 Len=0 TSval=3309365173 TSecr=3309365173
6/0.000129789 .0.0. .0.0. 90 8080 - 51836 [PSH, ACK] Seq=1 Ack=22 Win=65536 Len=24 TSval=3309365174 TSecr=3309365173
7/0.000139214 .0.0. .0.0. 66 51836 . 8080 [ACK] Seq=22 Ack=25 Win=65536 Len=0 TSval=3309365174 TSecr=3309365174
8]0.000152175 0.0, 0.0, 66 8080 - 51836 [FIN, ACK] Seq=25 Ack=22 Win=65536 Len=0 TSva 174 TSecr=; 174
9/0.000156041 .0.0. .0.0. 51836 - 8080 [FIN, 5 Win=65536 Len=0 TSval=3309365174 TSecr=3309365174
10 0.000162952 .0.0. .0.0. 8080 51836 [ACK] Seq=26 Ack=23 Win=65536 Len=0 TSval=3309365174 TSecr=3309365174
110.000167850 .0.0. .0.0. 51836 8080 [ACK] Seq=23 Ack=26 Win=65536 Len=0 TSval=3309365174 TSecr=3309365174
Initial, DCI
Handshake,
14/13.281735871 .0.0. .0.0. Handshake, 6e45132dd9d57e8a55T4faa09441c14b726b296, 2eb319cdasdf
15 13.282352152 .0.0. .0.0. 4eb319cdasdf 6C392e0, SCID=76e45132dd9d57e8a55r4faa09441c14b72

Frame 12: Packet, on wire (9936 bits), 1242 bytes captured (9936 bits) on inter
Ethernet II, Si 00:00 0:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (O [H
Internet Protocol Version 4, Src: 127 -

Us: Datagram Protocol, Src Port: 59271, Dst Port: 888:
.
> QUIC Connection information
[Packet Length: 327]
= Header Form: Long Header (1)
: True

cket Number Length: 1 bytes (6)]
1 (0 0001)
Destination Connection ID Length: 16
Destination Connection ID: 11do| 0179bbf 43266593591 1f
Source Connection ID Length: 6c 88 3

Packet (1242 bytes) Decrypted QUIC (264 bytes)

® E tcpquicpcapng

Figure 1: Wireshark #Ut T.H 4%k TCP A1 QUIC Pl Hi¥s tU
5% EAIAEE R, QUIC MITEREL T TCP:

TCP (5% E)
Received 100.00 MB in 89.23 seconds.
Throughput: 1.12 MB/s

QUIC (5% Ef1)
Received 100.00 MB in 65.45 seconds.
Throughput: 1.53 MB/s

£ 100ms SEBIEE T, QUIC HITERERZE L T TCP:

TCP (100ms ZEiR)
Received 100.00 MB in 125.67 seconds.
Throughput: 0.80 MB/s

QUIC (10@ems JLiR)
Received 100.00 MB in 78.34 seconds.
Throughput: 1.28 MB/s

4.4.2 ZRE BIEEETIL
ﬁﬁﬁﬁ tcp_multi_server . tcp_multi_client pill quic_multi_server v quic_multi_client iﬁ?f

Z i =2 .
TCP Z&EEMR: i 5 /> TCP &%, A ERALSH 20MB, &3 100MB.

/] AREaR A 2 2R FR AL R 2 AR
pthread_t threads[EXPECTED_CONNECTIONS];
int t_count = 0;

19

CGHEPLMERD) S50

while (t_count < EXPECTED_CONNECTIONS) {
if ((new_socket = accept(server_fd, (struct sockaddr *)&address,
(socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}

if (first_connect) {
clock_gettime(CLOCK_MONOTONIC, &start_time);
first_connect = 0;
printf("First connection received. Timer started.\n");

}

int *new_sock = malloc(1);
*new_sock = new_socket;

if (pthread_create(&threads[t_count], NULL, handle_client, (void*)new_sock) <
0) {
perror(“could not create thread");
return 1;

}

t_count++;

QUIC Zytillik: {84 QUIC #hs, £ 5 MR _EAEWMEYE, SR L 20MB, M3t
100MB.

/] P RIEAE R
StreamState streams[NUM_STREAMS];
for (int i = @; i < NUM_STREAMS; i++) {
streams[i].stream_id = i * 4;
streams[i].bytes_sent = 0;
streams[i].bytes_total = (long long)MB_PER_STREAM * 1024 * 1024;
streams[i].finished = false;

}

/1 AEEEH P RIE Z AN A
for (int i = @; i < NUM_STREAMS; i++) {
if (!streams[i].finished) {
while (streams[i].bytes_sent < streams[i].bytes_total) {
uinté4_t err_code = 0;
ssize t sent = quiche_conn_stream_send(conn, streams[i].stream_id,
payload, sizeof(payload), false, &err_code);
if (sent > 0) {
streams[i].bytes_sent += sent;
if (streams[i].bytes_sent >= streams[i].bytes_total) {
quiche_conn_stream_send(conn, streams[i].stream_id, NULL, O,
true, &err_code);
streams[i].finished = true;
printf("Stream %1d finished.\n", streams[i].stream_id);
}
} else {
break;

}

20

CGHEPLMERD) S50

MGt 2R

TCP 2%

TCP Multi-Connection Server listening on port 8081...
Waiting for 5 connections to transfer total 100 MB...
First connection received. Timer started.

Test Finished:

Total Connections: 5

Total Data Received: 100.00 MB
Time Taken: 52.88 seconds
Total Throughput: 1.89 MB/s

QUIC £

QUIC Multi-Stream Server listening on port 8889
Expecting approx 100 MB total data...
Connection accepted.

Test Finished:

Total Data Received: 100.00 MB
Time Taken: 49.75 seconds
Total Throughput: 2.01 MB/s

QUIC % Wi M M &t m& 8 T TCcP % & # , ¥ E JE KW £ QUIC
R A EE RS Z AW, WS T OE RSN E

5 LB

51 ABERE
ARSI SEIL TCP A1 QUIC P % S B 2 /7 - AR S5 2R A2 Fr . R EE 0 #T T EAIIHE
ANTF R 2% S5 R IVEREZE . SEBR SRR T LA B AR

1. TCP P SeHl: {8 F#FriE POSIX socket API SEHL T TCP & - IR S5 2827, HFEIHE
AEASThREFNPEREM A ThBE . TCP R HFHZE A /O A, SZEl 7. Hodis
1Rt ER R IR TR .

2. QUIC WM s : {# 1 Cloudflare f) quiche FESEZHL T QUIC % /7 - IR 45 28 FLF, AU4E
FEAIEAE DhRe AL eI T AE . QUIC A% 7 AR 2E /O B, SB[R ST, Wi
EHL, B, RS TIRE

3. PEREMNR: ZEARFEML 4T QER M. 5% £, 100ms #EIR) X} TCP Fl QUIC T
T AR, XL T BRI R R I . MRS R, FEIER MR T, TCP
A1 QUIC HItEREAMHIT; fEEBAIERIAEE R, QUIC fM:#E &L T TCP,

4. ZBE NN X T 5 A TCP 5 84~ QUIC b 5 Mm i LHattae . MHAss
K, QUIC Z Uit RERS LT TCP 24, FEG A QUIC fEfANEH: HEH £
AN, B> TR BT

21

CGHEPLMERD) S50

5. B . WX LIRS R, 4 T QUIC BMXHILH AL . QUIC FERIER .
ZOMRE RIS, ZEERTIREMR R T TCP AL ZE A, JERTM RE 1de
T RS R

ARS8 1) ERORE A

1. Socket ZifE: H#4& | Linux/Unix 5% T) socket Zmfefi A, FRAE T TCP Al UDP ¥l
M gmAE Y 22 55

2. QUIC A : %2] T quiche FERIEH 7%, B 7 QUIC PMUHIBCE . R it
EHEROMS.

3. AFFHZE 1/O: 42 T ARFHZE 1O MFH I At A, HR 15720 VO fE ML A
RIS

4. WL 223 TAEH tc RN &, #2720, EIRENKSHTINE
Tk
5. MEREIHT: 2% 3] T M] Wireshark 25 T BTG 00T, B8 T A&, 18R, %
A R A R BE R BR IO & V2
WA R SE N, AN EIR T OTCP Al QUIC Whill I SE Bl AR, IR NHAE T W Fh
T BRI RE R, ARSI EE RN I R G B T A

5.2 IS RS

ALK, RIEAFAE T TCP Ml QUIC MRS T AR R BRI RS 22 57 . MACHD
ETH%, TCP WSl i SeHUMIR 88, 45 FIARHERY socket APT BT 52 fRIEA TN AE: 17 QUIC
PRSI N 2, AT BN A . TR, NS A T

TESEILEFE A, %F QUIC M I AE T H HMAIINIR . QUIC 2T UDP SEHL 1 n] FE &4
k%5, B T TCP fEERE RGN AZ T BO(EAL In) B3, i 75 DR B8 3 A AL AL 5 R 3% » QUIC
(22 1% 2 ThREME R T TCP MIBKBHZE M @, 7EmitiR. & EAAE FRIM A . QUIC
ff) O-RTT JEREEE T4 5B 35 PG 7 SR T AR, 0T 40 % g 7 o V42 1 B 3 i e 3t

Eg o
PR TT EAR S

TCP W I THAAREL T X285 B A (R SEPEAE S5 B) - TCP J# I =K 38 T BN & . &
PRI SRR O T B0 T S5, (H 5] N T &4 57 2B R FNBA Sk BH ZE 25 7] # . TCP F%
THHSES T RAM N HERIA S, (HLEBACRALE N, I 8 J= PR 320 42 B

QUIC PR AT AARER 1 MR AL S A1 RIE AL e IR« QUIC 2T UDP SEHL, W 1
TCP {E#AE RS A% R R AR R, 8 A5 B) B8 B A4 BE N R 7%« QUIC B2 B8 H
O-RTT iEH:. ERITBERE, ExFBURMIZS N H 7 REAT T, $em TSR
P AR5

PRI S 2

TESEIEFE A, FIER] 7 LA) @, B 22 QUIC FE ML B in) &5, UE S indk. N P
WIKESSHFEIEMILE, B2 SEOERRN. HIUEIEFZE 1O AL @, 72
IERiALEE EwouLDBLOCK FH EAGAIN FHimfY, Efn LIFIAPHIE. &5 &MEHI R, QUIC
(R ID 75 EAL TG 0 I, 27 i AR AR ID 9 04 44 8+ 12..., ARG K 18]
MID A 1. 5. 9% 13..6

22

CGHEPLMERD) S50

BT Wireshark JUELHT, A T —NE@BHIBS: TCP MiEH# V. FHE 1-RTT (SYN,
SYN-ACK. ACK), Tfij QUIC [{Ji%#:## . 75 % 1-RTT (ClientHello. ServerHello. Finished),
{H QUIC SZHF 0-RTT #udfsf& i, TEEHEE IR A IE N AR, #—PRK TR . X
FhBHABL T QUIC XA RE AL -

PEREXT EL 4T -

MRS K E, TCP Al QUIC 7E 1R M ZE PR T (MR AHIT, Frih 2 4R87E 2 MB/s /244 .
BEEMFEIRAEE T, QUIC HItERE R EM T TCP:

o 1£ 5% EEIAEE T, TCP &M R % 1.12 MB/s, 1fi QUIC HIAM: &N 1.53 MB/s, T+
T4137%

o £ 100ms ZEIRIFEE R, TCP (&M E[£ % 0.80 MB/s, 1M QUIC [&M &N 1.28 MB/s, 2
T 1 %) 60%

XA REZE S YR T QUIC 2 B 2 AN BE 4 O 245 I 5005 . QUIC fE FAMIERE B
HEMN, —MREEASEW AR5, TR S T TCP AR Sk B ZE [.

CigtiF AN e
SRS A, FAART LA CAT JUA 5 T R AT et -

1. QUIC #ZEFE AL 2FT s Id F Reno B3k, W] PAZ4R{#] Cubic 5% BBR %5 5 5t i3k
AR HI AL, D EtRe.

2. HEFHEE M £ QUIC &)™ i SEHLERGM, B O ER, BB s, 72
e Pk RE -

3. AR SEBLRIILE AL, W iR EEE RO e, M P ik .

4. PEREMRIE: BINERCIRES . PR I w DSF ARG, (8 PERE Dt A) 2 W .

5. IPv6 SCFF: T RFEFLASCRE IPve, SCIL T —ARMIZE WAL S T g

T ARELLS, AN ESE T TCP A1 QUIC P FISEELFE A, B BLAY 252 7 Wil A
VOO &, BETE R SEEL— AN 58 BRI X 25 B iSO . IX Pl EE a0 T JE Sl ST RE R 2 I X 4%
i (Wl HTTP/3+ WebRTC) LA N2 A0 OC TAEH A H 2 S o iy, @iy gy
M ERE E S, FRWIRZIEEM 7 SO S M RE R, NS fE I R G AIARL
IR T E R IELR

23

	1 实验概要
	1.1 实验内容
	1.2 实验要求
	1.3 实验目的

	2 实验原理及方案
	2.1 TCP 协议原理
	2.2 QUIC 协议原理
	2.3 性能测试方案

	3 实验环境
	3.1 实验设备与软件
	3.1.1 软件环境

	4 实验步骤
	4.1 环境配置
	4.1.1 Tailscale 虚拟局域网配置
	4.1.2 证书生成
	4.1.3 网络模拟配置

	4.2 实现 TCP 客户端-服务器程序
	4.2.1 TCP 服务器实现
	4.2.2 TCP 客户端实现
	4.2.3 编译与运行

	4.3 实现 QUIC 客户端-服务器程序
	4.3.1 QUIC 服务器实现
	4.3.2 QUIC 客户端实现
	4.3.3 编译与运行

	4.4 性能测试
	4.4.1 吞吐量测试
	4.4.2 多路复用性能测试

	5 实验总结
	5.1 内容总结
	5.2 心得感悟

