
网 络 工 程
本 科 实 验 报 告

实验名称： 基于 OpenFlow的 SDN交换机实验

学 员 姓 名 程景愉 学 号 202302723005

指 导 教 员 胡罡 职 称 教授

实 验 室 306-707 实 验 时 间 2025.1.2

国防科技大学教育训练部制

《本科实验报告》填写说明

实验报告内容编排应符合以下要求：

（1）采用 A4（21cm×29.7cm）白色复印纸，单面黑字。上下左右各侧的页
边距均为 3cm；缺省文档网格：字号为小 4号，中文为宋体，英文和阿拉伯数字
为 Times New Roman，每页 30行，每行 36字；页脚距边界为 2.5cm，页码置于
页脚、居中，采用小 5号阿拉伯数字从 1开始连续编排，封面不编页码。

（2）报告正文最多可设四级标题，字体均为黑体，第一级标题字号为 4号，
其余各级标题为小 4号；标题序号第一级用“一、”、“二、”……，第二级
用“（一）”、“（二）” ……，第三级用“1.”、“2.” ……，第四级
用“（1）”、“（2）” ……，分别按序连续编排。

（3）正文插图、表格中的文字字号均为 5号。

ii

《网络工程》实验报告

目录
1 实验概述 . ⁠5

1.1 实验内容 . ⁠5

1.2 实验要求 . ⁠5

2 编写 SDN交换机源码处理 OpenFlow协议消息 . ⁠5

2.1 本次实验所编写的协议 . ⁠5

2.1.1 实现的协议 . ⁠5

2.1.2 组内分工 . ⁠6

2.2 相关数据结构 . ⁠6

2.3 消息头构建 . ⁠6

2.4 消息处理函数 . ⁠6

2.4.1 处理 Hello消息 . ⁠6

2.4.2 处理 Features Request消息 . ⁠7

2.4.3 处理 Get Config Request消息 . ⁠7

2.4.4 处理 Description Request消息 . ⁠8

2.4.5 处理 Flow Stats Request消息 . ⁠9

2.4.6 处理 Aggregate Stats Request消息 . ⁠10

2.4.7 处理 Table Stats Request消息 . ⁠10

2.4.8 处理 Port Stats Request消息 . ⁠11

2.4.9 处理 Group Features Request消息 . ⁠11

2.4.10 处理 Port Description Request消息 . ⁠12

2.4.11 处理 Packet Out消息 . ⁠12

2.4.12 处理 Role Request消息 . ⁠13

2.5 实验结果 . ⁠13

2.5.1 OFPT_ROLE_REPLY . ⁠14

2.5.2 OFPT_MULTIPART_REPLY . ⁠15

3 实验总结 . ⁠17

参考文献 . ⁠18

3

《网络工程》实验报告

图目录
Figure 1 OFPT_ROLE_REQUEST消息 . ⁠14

Figure 2 OFPT_ROLE_REPLY消息 . ⁠15

Figure 3 OFPMP_DESC消息 . ⁠15

Figure 4 OFPMP_TABLE消息 . ⁠16

4

《网络工程》实验报告

1 实验概述

1.1 实验内容

本次实验中有三个小实验：

1. 基于 Openbox-S4测试 SDN交换功能

2. 基于 SDN 交换机源码处理 openflow协议消息

3. 实验三 使用 REST API 接口查询交换机的相关功能数据

本 实 验 报 告 重 点 分 析 第 二 个 小 实 验 的 实 现 细 节 。

1.2 实验要求
1. 熟悉 Openbox-S4的基本功能

2. 熟悉 OpenFlow协议的基本消息格式

3. 熟悉 OpenFlow协议的基本消息处理流程

4. 熟悉 REST API接口的基本使用

2 编写 SDN交换机源码处理 OpenFlow协议消息

本次实验在 main_user_openflow.c文件中实现了OpenFlow协议处理逻辑。代码通过多个

函数处理不同类型的OpenFlow消息，包括Hello消息、Features Request消息、Flow Stats Request

消息等。每个函数都根据消息类型生成相应的回复消息，并通过 send_openflow_message函数

发送给控制器。以下将逐一分析每个函数的实现细节。

2.1 本次实验所编写的协议

本次实验实现了OpenFlow协议中的大部分消息处理功能。实验代码涵盖了从交换机特性

查询到流表统计、端口统计等多种消息类型的处理。以下是实验编写协议的总结。

2.1.1 实现的协议

• OFPT_FEATURES_REQUEST：用于获取交换机支持的流表数量、缓冲区大小等特性信息。

对应的处理函数为 handle_opfmsg_features_request。

• OFPT_GET_CONFIG_REQUEST：用于查询交换机的配置信息，如Miss Send Length等。对

应的处理函数为 handle_ofpmsg_get_config_request。

• OFPT_MULTIPART_REQUEST：用于处理多种统计信息请求，包括交换机描述信息、流表

信息、端口统计信息等。对应的处理函数包括：

‣ handle_ofpmsg_desc

‣ handle_ofpmsg_flow_stats

‣ handle_ofpmsg_aggregate

‣ handle_ofpmsg_table

‣ handle_ofpmsg_port_stats

‣ handle_ofpmsg_group_features

‣ handle_ofpmsg_port_desc

• OFPT_PACKET_OUT：用于处理控制器发送的数据包，并根据动作指示将数据包从指定

端口发送出去。对应的处理函数为 handle_ofpmsg_packet_out。

• OFPT_ROLE_REQUEST：用于配置交换机的角色（如主控制器、从控制器等）。对应的处

理函数为 handle__opfmsg_role_request。

5

《网络工程》实验报告

2.1.2 组内分工

本次实验由组内成员共同完成，每个成员负责不同的消息处理函数。以下是每个成员负责

的函数列表。

分工 函数

handle_opfmsg_features_request

handle_ofpmsg_desc

handle_ofpmsg_flow_stats

handle_ofpmsg_aggregate

handle_ofpmsg_table

handle_ofpmsg_port_desc

王李烜

handle_opfmsg_role_request

handle_ofpmsg_get_config_request
廖中煜

handle_ofpmsg_packet_out

handle_ofpmsg_port_stats
王誉潞

handle_ofpmsg_group_features

2.2 相关数据结构

在 main_user_openflow.c中，定义了一些关键的数据结构和全局变量，用于处理 Open

Flow协议的消息。主要的数据结构包括 ofp_header、ofp_switch_features、ofp_flow_stats

和 ofp_port_stats等。这些数据结构用于处理OpenFlow协议中的不同消息类型，如交换机特

性请求、流表统计请求、端口统计请求等。

ofp_header结构体用于表示OpenFlow消息头，包含协议版本、消息类型、消息长度和事

务 ID等字段。 ofp_switch_features结构体用于表示交换机的特性信息，如数据路径 ID、缓

冲区数量、流表数量等。ofp_flow_stats结构体用于表示流表统计信息，如流表项长度、优先

级、数据包计数等。ofp_port_stats结构体用于表示端口统计信息，如端口号、接收数据包数、

发送数据包数等。

2.3 消息头构建

在 OpenFlow协议中，每个消息都有一个消息头，用于标识消息的版本、类型、长度和事

务 ID。代码中实现了 build_opfmsg_header函数，用于构建 OpenFlow消息头。该函数接收消

息长度、消息类型和事务 ID作为参数，并填充消息头的各个字段。通过调用该函数，可以确

保消息能够被正确解析和处理。

2.4 消息处理函数

代码中实现了多个 OpenFlow消息处理函数，每个函数对应一种 OpenFlow消息类型。以

下是每个函数的详细分析。

2.4.1 处理 Hello消息

handle_opfmsg_hello函数用于处理控制器发送的 Hello消息。Hello消息是 OpenFlow协

议中的基础消息，用于交换控制器和交换机之间的协议版本信息。函数首先检查消息头中的

6

《网络工程》实验报告

version字段，判断协议版本是否为 1.3。如果版本匹配，则打印接收到的 Hello消息；否则，

生成一个错误消息并发送给控制器。函数返回 HANDLE表示消息已处理。

static enum ofperr handle_opfmsg_hello(struct ofp_buffer *ofpbuf) {

 if (ofpbuf->header.version == 0x04) {

 printf("RECV HELLO!\n\n\n");

 } else {

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_ERROR, ofpbuf->header.xid, sizeof(struct

ofp_header));

 send_openflow_message(ofpbuf_reply, sizeof(struct ofp_header));

 }

 return HANDLE;

}

2.4.2 处理 Features Request消息

handle_opfmsg_features_request函数用于处理控制器发送的 Features Request消息。该

消息用于查询交换机的特性信息，如支持的流表数量、缓冲区大小等。函数生成一个 Features

Reply消息，并填充交换机的特性信息，如数据路径 ID、缓冲区数量、流表数量等。通过

send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE表示消息已处理。

static enum ofperr handle_opfmsg_features_request(struct ofp_buffer *ofpbuf)

{

 int feature_reply_len = sizeof(struct ofp_switch_features) +

sizeof(struct ofp_header);

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_opfmsg_reply_ofpbuf(OFPT_FEATURES_REPLY, ofpbuf->header.xid,

feature_reply_len);

 struct ofp_switch_features *feature_reply_msg = (struct

ofp_switch_features *)ofpbuf_reply->data;

 feature_reply_msg->datapath_id = 0x0100000000000000;

 feature_reply_msg->n_buffers = htonl(46);

 feature_reply_msg->n_tables = 3;

 feature_reply_msg->capabilities = 0x7;

 send_openflow_message(ofpbuf_reply, feature_reply_len);

 return HANDLE;

}

2.4.3 处理 Get Config Request消息

handle_ofpmsg_get_config_request函数用于处理控制器发送的 Get Config Request消

息。该消息用于查询交换机的配置信息，如Miss Send Length等。函数生成一个Get Config Reply

消息，并填充交换机的配置信息。通过 send_openflow_message函数将回复消息发送给控制器，

并返回 HANDLE表示消息已处理。

7

《网络工程》实验报告

static enum ofperr handle_ofpmsg_get_config_request(struct ofp_buffer

*ofpbuf) {

 int reply_len = sizeof(struct ofp_switch_config) + sizeof(struct

ofp_header);

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_GET_CONFIG_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_switch_config *switch_config_reply = (struct

ofp_switch_config *)ofpbuf_reply->data;

 switch_config_reply->flags = htons(0x0000);

 switch_config_reply->miss_send_len = htons(32);

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.4 处理 Description Request消息

handle_ofpmsg_desc函数用于处理控制器发送的Description Request消息。该消息用于查

询交换机的描述信息，如制造商、硬件版本等。函数生成一个Multipart Reply消息，并填充交

换机的描述信息。通过 send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE

表示消息已处理。

8

《网络工程》实验报告

static enum ofperr handle_ofpmsg_desc(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_multipart)

+ sizeof(struct ofp_desc_stats);

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *ofpmp_reply = (struct ofp_multipart

*)ofpbuf_reply->data;

 static const char *default_mfr_desc = "Wanglixuan";

 static const char *default_hw_desc = "Lixuan_OpenBox";

 static const char *default_sw_desc = "Lixuan_Driver";

 static const char *default_serial_desc = "Lixuan OpenBox Series";

 static const char *default_dp_desc = "None";

 ofpmp_reply->type = htons(OFPMP_DESC);

 ofpmp_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 snprintf(ofpmp_reply->ofpmp_desc[0].mfr_desc, sizeof ofpmp_reply-

>ofpmp_desc[0].mfr_desc, "%s", default_mfr_desc);

 snprintf(ofpmp_reply->ofpmp_desc[0].hw_desc, sizeof ofpmp_reply-

>ofpmp_desc[0].hw_desc, "%s", default_hw_desc);

 snprintf(ofpmp_reply->ofpmp_desc[0].sw_desc, sizeof ofpmp_reply-

>ofpmp_desc[0].sw_desc, "%s", default_sw_desc);

 snprintf(ofpmp_reply->ofpmp_desc[0].serial_num, sizeof ofpmp_reply-

>ofpmp_desc[0].serial_num, "%s", default_serial_desc);

 snprintf(ofpmp_reply->ofpmp_desc[0].dp_desc, sizeof ofpmp_reply-

>ofpmp_desc[0].dp_desc, "%s", default_dp_desc);

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.5 处理 Flow Stats Request消息

handle_ofpmsg_flow_stats函数用于处理控制器发送的 Flow Stats Request消息。该消息

用于查询交换机的流表统计信息。函数生成一个Multipart Reply消息，并设置消息类型为 Flow

Stats。通过 send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE表示消息已

处理。

static enum ofperr handle_ofpmsg_flow_stats(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct

ofp_multipart);

 struct ofp_buffer *reply_buffer = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *multipart_reply = (struct ofp_multipart

*)reply_buffer->data;

 multipart_reply->type = htons(OFPMP_FLOW);

 multipart_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 send_openflow_message(reply_buffer, reply_len);

 return HANDLE;

}

9

《网络工程》实验报告

2.4.6 处理 Aggregate Stats Request消息

handle_ofpmsg_aggregate函数用于处理控制器发送的Aggregate Stats Request消息。该消

息用于查询交换机的聚合统计信息。函数生成一个Multipart Reply消息，并填充聚合统计信息，

如数据包计数、字节计数等。通过 send_openflow_message函数将回复消息发送给控制器，并

返回 HANDLE表示消息已处理。

static enum ofperr handle_ofpmsg_aggregate(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_multipart)

+ sizeof(struct ofp_aggregate_stats_reply);

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *ofpmp_reply = (struct ofp_multipart

*)ofpbuf_reply->data;

 ofpmp_reply->type = htons(OFPMP_AGGREGATE);

 ofpmp_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 ofpmp_reply->ofpmp_aggregate_reply[0].packet_count = htonll(46);

 ofpmp_reply->ofpmp_aggregate_reply[0].byte_count = htonll(2025);

 ofpmp_reply->ofpmp_aggregate_reply[0].flow_count = htonll(200);

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.7 处理 Table Stats Request消息

handle_ofpmsg_table函数用于处理控制器发送的Table Stats Request消息。该消息用于查

询交换机的流表统计信息。函数生成一个Multipart Reply消息，并填充流表统计信息，如匹配计

数、查找计数等。通过 send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE

表示消息已处理。

10

《网络工程》实验报告

static enum ofperr handle_ofpmsg_table(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_multipart)

+ sizeof(struct ofp_table_stats) * 1;

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *ofpmp_reply = (struct ofp_multipart

*)ofpbuf_reply->data;

 ofpmp_reply->type = htons(OFPMP_TABLE);

 ofpmp_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 ofpmp_reply->table_stats[0].matched_count = htonll(2025);

 ofpmp_reply->table_stats[0].table_id = 0;

 ofpmp_reply->table_stats[0].lookup_count = htonll(46);

 ofpmp_reply->table_stats[0].active_count = htonl(1);

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.8 处理 Port Stats Request消息

handle_ofpmsg_port_stats函数用于处理控制器发送的 Port Stats Request消息。该消息用

于查询交换机的端口统计信息。函数生成一个Multipart Reply消息，并填充端口统计信息，如

持续时间、接收数据包数等。通过 send_openflow_message函数将回复消息发送给控制器，并

返回 HANDLE表示消息已处理。

static enum ofperr handle_ofpmsg_port_stats(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_multipart)

+ sizeof(struct ofp_port_stats) * nmps.cnt;

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *ofpmp_reply = (struct ofp_multipart

*)ofpbuf_reply->data;

 ofpmp_reply->type = htons(OFPMP_PORT_STATS);

 ofpmp_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 for (int i = 0; i < nmps.cnt; i++) {

 ofpmp_reply->ofpmp_port_stats[i] = nmps.ports[i].stats;

 ofpmp_reply->ofpmp_port_stats[i].duration_sec = htonl(2025);

 ofpmp_reply->ofpmp_port_stats[i].duration_nsec = htonl(51);

 }

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.9 处理 Group Features Request消息

handle_ofpmsg_group_features函数用于处理控制器发送的Group Features Request消息。

该消息用于查询交换机的组表特性信息。函数生成一个Multipart Reply消息，并填充组表特

11

《网络工程》实验报告

性信息，如最大组数等。通过 send_openflow_message函数将回复消息发送给控制器，并返回

HANDLE表示消息已处理。

static enum ofperr handle_ofpmsg_group_features(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct

ofp_group_features) + 8;

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_group_features *group = (struct ofp_group_features

*)ofpbuf_reply->data;

 group->types = htons(OFPMP_GROUP_FEATURES);

 group->max_groups[0] = htonl(0xdeadbeef);

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.10 处理 Port Description Request消息

handle_ofpmsg_port_desc函数用于处理控制器发送的Port Description Request消息。该消

息用于查询交换机的端口描述信息。函数生成一个Multipart Reply消息，并填充端口描述信息，

如端口状态等。通过 send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE表

示消息已处理。

static enum ofperr handle_ofpmsg_port_desc(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_multipart)

+ sizeof(struct ofp_port) * nmps.cnt;

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_MULTIPART_REPLY, ofpbuf->header.xid, reply_len);

 struct ofp_multipart *ofpmp_reply = (struct ofp_multipart

*)ofpbuf_reply->data;

 ofpmp_reply->type = htons(OFPMP_PORT_DESC);

 ofpmp_reply->flags = htonl(OFPMP_REPLY_MORE_NO);

 for (int i = 0; i < nmps.cnt; i++) {

 ofpmp_reply->ofpmp_port_desc[i] = nmps.ports[i].state;

 }

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.4.11 处理 Packet Out消息

handle_ofpmsg_packet_out函数用于处理控制器发送的Packet Out消息。该消息用于指示

交换机将数据包从指定端口发送出去。函数解析消息中的动作列表，判断动作类型是否为

OFPAT_OUTPUT，并根据动作指示的端口号调用 nms_exec_action函数将数据包发送出去。函数

返回 HANDLE表示消息已处理。

12

《网络工程》实验报告

static enum ofperr handle_ofpmsg_packet_out(struct ofp_buffer *ofpbuf) {

 struct ofp_packet_out *out = (struct ofp_packet_out *)ofpbuf;

 struct ofp_action_output *action = (struct ofp_action_output *)&out-

>actions[0];

 int action_len = ntohs(out->actions_len);

 struct eth_header *eth = (struct eth_header *)&ofpbuf-

>data[sizeof(struct ofp_packet_out) - sizeof(struct ofp_header) +

action_len];

 int send_len = ntohs(ofpbuf->header.length) - sizeof(struct

ofp_packet_out) - action_len;

 if (action_len == 0) {

 nms_exec_action(ntohl(out->in_port), OFPP_FLOOD, eth, send_len, -1);

 } else {

 while (action_len > 0) {

 if (action->type == OFPAT_OUTPUT) {

 nms_exec_action(ntohl(out->in_port), ntohl(action->port),

eth, send_len, -1);

 }

 action_len -= sizeof(struct ofp_action_output);

 action++;

 }

 }

 return HANDLE;

}

2.4.12 处理 Role Request消息

handle_opfmsg_role_request函数用于处理控制器发送的Role Request消息。该消息用于

配置交换机的角色（如主控制器、从控制器等）。函数生成一个 Role Reply消息，并填充角色

配置信息。通过 send_openflow_message函数将回复消息发送给控制器，并返回 HANDLE表示消

息已处理。

static enum ofperr handle_opfmsg_role_request(struct ofp_buffer *ofpbuf) {

 int reply_len = sizeof(struct ofp_header) + sizeof(struct ofp_role);

 struct ofp_buffer *ofpbuf_reply = (struct ofp_buffer

*)build_reply_ofpbuf(OFPT_ROLE_REPLY, ofpbuf->header.xid, reply_len);

 memcpy(ofpbuf_reply->data, ofpbuf->data, sizeof(struct ofp_role));

 ofpbuf_reply->header.type = OFPT_ROLE_REPLY;

 send_openflow_message(ofpbuf_reply, reply_len);

 return HANDLE;

}

2.5 实验结果

在控制器与交换机之间进行抓包，分析报文的交互过程。控制器发送不同类型的OpenFlow

消息给交换机，交换机接收并处理消息，并返回相应的回复消息。通过抓包分析，可以看到消

息的交互过程，包括消息头、消息类型、消息长度等字段的解析和处理。用这种方式来验证协

议编写的正确性。

13

《网络工程》实验报告

实现的子协议种类较多，这里只展示部分报文内容。

2.5.1 OFPT_ROLE_REPLY

OFPT_ROLE_REPLY类型消息。此消息用于配置交换机的角色（如主控制器、从控制器

等）。下面的 Figure 1 是控制器发送的 Role Request消息。

Figure 1: OFPT_ROLE_REQUEST消息

如图 Figure 2 所示，交换机接收并处理后返回的 Role Reply消息。

14

《网络工程》实验报告

Figure 2: OFPT_ROLE_REPLY消息

这说明交换机已经接收到了控制器发送的 Role Request消息，并返回了 Role Reply消息。

2.5.2 OFPT_MULTIPART_REPLY

OFPMP_DESC类型消息。此消息用于查询交换机的描述信息，包括制造商、硬件版本、软

件版本、序列号和数据路径描述等。

Figure 3: OFPMP_DESC消息

15

《网络工程》实验报告

可以看到图中的消息包含了制造商、硬件版本、软件版本、序列号和数据路径描述等信息（此

处使用了自己的信息进行标记与区分）。

OFPMP_TABLE类型消息。此消息用于查询交换机的流表统计信息，包括匹配计数、查找

计数等。

Figure 4: OFPMP_TABLE消息

可以看到图中的消息包含了匹配计数、查找计数等信息（此处修改为了自己设置的值）。

16

《网络工程》实验报告

3 实验总结

本次实验通过编写 SDN交换机源码处理OpenFlow协议消息，深入理解了OpenFlow协议

的基本消息格式和处理流程。实验涵盖了从交换机特性查询到流表统计、端口统计等多种

消息类型的处理，成功实现了大部分 OpenFlow协议的核心功能。通过实验，我们不仅掌握了

OpenFlow协议的基本工作原理，还熟悉了如何通过代码实现协议消息的解析与响应。

在实验过程中，我们首先熟悉了 Openbox-S4的基本功能，并通过编写代码实现了对

OpenFlow协议消息的处理。实验代码中，我们实现了包括 Hello消息、Features Request消息、

Flow Stats Request消息等在内的多种消息处理函数。每个函数都根据消息类型生成相应的回复

消息，并通过 send_openflow_message函数发送给控制器。通过抓包分析，我们验证了消息的

交互过程，确保协议编写的正确性。

实验中的难点在于如何正确处理不同类型的OpenFlow消息，并确保消息的格式和内容符

合协议规范。通过查阅 OpenFlow协议规范和参考相关文献，我们逐步解决了这些问题，并成

功实现了协议的核心功能。此外，实验还要求我们熟悉 REST API接口的使用，这为后续的网

络功能扩展奠定了基础。

实验结果表明，我们编写的代码能够正确处理控制器发送的 OpenFlow消息，并返回相应

的回复消息。通过抓包分析，我们验证了消息的交互过程，确保协议编写的正确性。实验的成

功不仅加深了我们对 OpenFlow协议的理解，也提升了我们的编程能力和网络协议分析能力。

总的来说，本次实验达到了预期的目标，成功实现了 OpenFlow协议的核心功能。通过实

验，我们不仅掌握了 OpenFlow协议的基本工作原理，还熟悉了如何通过代码实现协议消息的

解析与响应。未来，我们可以在此基础上进一步扩展功能，如实现流表规则的动态添加和删除，

以更好地支持 SDN网络的灵活性和可扩展性。

17

《网络工程》实验报告

参考文献

[1] OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification Version 1.3.0[EB/

OL]. (2014-10). https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v

1.3.0.pdf.

[2] GOLDSUNSHINE. OpenFlow协议详解[EB/OL]. (2017-07-28). https://www.cnblogs.com/

goldsunshine/p/7262484.html.

[3] 王小二. OpenFlow协议简介[EB/OL]. (2024-12-25). https://www.jianshu.com/p/acfeae1771

b3.

[4] CODEJUNERY2022. 深入理解 OpenFlow协议[EB/OL]. (2024-12-25). https://www.jianshu.

com/p/82e238eb8d14.

18

https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.cnblogs.com/goldsunshine/p/7262484.html
https://www.cnblogs.com/goldsunshine/p/7262484.html
https://www.jianshu.com/p/acfeae1771b3
https://www.jianshu.com/p/acfeae1771b3
https://www.jianshu.com/p/82e238eb8d14
https://www.jianshu.com/p/82e238eb8d14

	1 实验概述
	1.1 实验内容
	1.2 实验要求

	2 编写SDN交换机源码处理OpenFlow协议消息
	2.1 本次实验所编写的协议
	2.1.1 实现的协议
	2.1.2 组内分工

	2.2 相关数据结构
	2.3 消息头构建
	2.4 消息处理函数
	2.4.1 处理Hello消息
	2.4.2 处理Features Request消息
	2.4.3 处理Get Config Request消息
	2.4.4 处理Description Request消息
	2.4.5 处理Flow Stats Request消息
	2.4.6 处理Aggregate Stats Request消息
	2.4.7 处理Table Stats Request消息
	2.4.8 处理Port Stats Request消息
	2.4.9 处理Group Features Request消息
	2.4.10 处理Port Description Request消息
	2.4.11 处理Packet Out消息
	2.4.12 处理Role Request消息

	2.5 实验结果
	2.5.1 OFPT_ROLE_REPLY
	2.5.2 OFPT_MULTIPART_REPLY

	3 实验总结
	参考文献

