First Commit

This commit is contained in:
2025-02-06 22:24:29 +08:00
parent ed7df4c81e
commit 7539e6a53c
18116 changed files with 6181499 additions and 0 deletions

View File

@@ -0,0 +1,594 @@
/*
* OpenAL Convolution Reverb Example
*
* Copyright (c) 2020 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for applying convolution reverb to a source. */
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#ifndef AL_SOFT_convolution_reverb
#define AL_SOFT_convolution_reverb
#define AL_EFFECT_CONVOLUTION_REVERB_SOFT 0xA000
#endif
/* Filter object functions */
static LPALGENFILTERS alGenFilters;
static LPALDELETEFILTERS alDeleteFilters;
static LPALISFILTER alIsFilter;
static LPALFILTERI alFilteri;
static LPALFILTERIV alFilteriv;
static LPALFILTERF alFilterf;
static LPALFILTERFV alFilterfv;
static LPALGETFILTERI alGetFilteri;
static LPALGETFILTERIV alGetFilteriv;
static LPALGETFILTERF alGetFilterf;
static LPALGETFILTERFV alGetFilterfv;
/* Effect object functions */
static LPALGENEFFECTS alGenEffects;
static LPALDELETEEFFECTS alDeleteEffects;
static LPALISEFFECT alIsEffect;
static LPALEFFECTI alEffecti;
static LPALEFFECTIV alEffectiv;
static LPALEFFECTF alEffectf;
static LPALEFFECTFV alEffectfv;
static LPALGETEFFECTI alGetEffecti;
static LPALGETEFFECTIV alGetEffectiv;
static LPALGETEFFECTF alGetEffectf;
static LPALGETEFFECTFV alGetEffectfv;
/* Auxiliary Effect Slot object functions */
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
/* This stuff defines a simple streaming player object, the same as alstream.c.
* Comments are removed for brevity, see alstream.c for more details.
*/
#define NUM_BUFFERS 4
#define BUFFER_SAMPLES 8192
typedef struct StreamPlayer {
ALuint buffers[NUM_BUFFERS];
ALuint source;
SNDFILE *sndfile;
SF_INFO sfinfo;
float *membuf;
ALenum format;
} StreamPlayer;
static StreamPlayer *NewPlayer(void)
{
StreamPlayer *player;
player = calloc(1, sizeof(*player));
assert(player != NULL);
alGenBuffers(NUM_BUFFERS, player->buffers);
assert(alGetError() == AL_NO_ERROR && "Could not create buffers");
alGenSources(1, &player->source);
assert(alGetError() == AL_NO_ERROR && "Could not create source");
alSource3i(player->source, AL_POSITION, 0, 0, -1);
alSourcei(player->source, AL_SOURCE_RELATIVE, AL_TRUE);
alSourcei(player->source, AL_ROLLOFF_FACTOR, 0);
assert(alGetError() == AL_NO_ERROR && "Could not set source parameters");
return player;
}
static void ClosePlayerFile(StreamPlayer *player)
{
if(player->sndfile)
sf_close(player->sndfile);
player->sndfile = NULL;
free(player->membuf);
player->membuf = NULL;
}
static void DeletePlayer(StreamPlayer *player)
{
ClosePlayerFile(player);
alDeleteSources(1, &player->source);
alDeleteBuffers(NUM_BUFFERS, player->buffers);
if(alGetError() != AL_NO_ERROR)
fprintf(stderr, "Failed to delete object IDs\n");
memset(player, 0, sizeof(*player));
free(player);
}
static int OpenPlayerFile(StreamPlayer *player, const char *filename)
{
size_t frame_size;
ClosePlayerFile(player);
player->sndfile = sf_open(filename, SFM_READ, &player->sfinfo);
if(!player->sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(NULL));
return 0;
}
player->format = AL_NONE;
if(player->sfinfo.channels == 1)
player->format = AL_FORMAT_MONO_FLOAT32;
else if(player->sfinfo.channels == 2)
player->format = AL_FORMAT_STEREO_FLOAT32;
else if(player->sfinfo.channels == 6)
player->format = AL_FORMAT_51CHN32;
else if(player->sfinfo.channels == 3)
{
if(sf_command(player->sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
player->format = AL_FORMAT_BFORMAT2D_FLOAT32;
}
else if(player->sfinfo.channels == 4)
{
if(sf_command(player->sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
player->format = AL_FORMAT_BFORMAT3D_FLOAT32;
}
if(!player->format)
{
fprintf(stderr, "Unsupported channel count: %d\n", player->sfinfo.channels);
sf_close(player->sndfile);
player->sndfile = NULL;
return 0;
}
frame_size = (size_t)(BUFFER_SAMPLES * player->sfinfo.channels) * sizeof(float);
player->membuf = malloc(frame_size);
return 1;
}
static int StartPlayer(StreamPlayer *player)
{
ALsizei i;
alSourceRewind(player->source);
alSourcei(player->source, AL_BUFFER, 0);
for(i = 0;i < NUM_BUFFERS;i++)
{
sf_count_t slen = sf_readf_float(player->sndfile, player->membuf, BUFFER_SAMPLES);
if(slen < 1) break;
slen *= player->sfinfo.channels * (sf_count_t)sizeof(float);
alBufferData(player->buffers[i], player->format, player->membuf, (ALsizei)slen,
player->sfinfo.samplerate);
}
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error buffering for playback\n");
return 0;
}
alSourceQueueBuffers(player->source, i, player->buffers);
alSourcePlay(player->source);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error starting playback\n");
return 0;
}
return 1;
}
static int UpdatePlayer(StreamPlayer *player)
{
ALint processed, state;
alGetSourcei(player->source, AL_SOURCE_STATE, &state);
alGetSourcei(player->source, AL_BUFFERS_PROCESSED, &processed);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error checking source state\n");
return 0;
}
while(processed > 0)
{
ALuint bufid;
sf_count_t slen;
alSourceUnqueueBuffers(player->source, 1, &bufid);
processed--;
slen = sf_readf_float(player->sndfile, player->membuf, BUFFER_SAMPLES);
if(slen > 0)
{
slen *= player->sfinfo.channels * (sf_count_t)sizeof(float);
alBufferData(bufid, player->format, player->membuf, (ALsizei)slen,
player->sfinfo.samplerate);
alSourceQueueBuffers(player->source, 1, &bufid);
}
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error buffering data\n");
return 0;
}
}
if(state != AL_PLAYING && state != AL_PAUSED)
{
ALint queued;
alGetSourcei(player->source, AL_BUFFERS_QUEUED, &queued);
if(queued == 0)
return 0;
alSourcePlay(player->source);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error restarting playback\n");
return 0;
}
}
return 1;
}
/* CreateEffect creates a new OpenAL effect object with a convolution reverb
* type, and returns the new effect ID.
*/
static ALuint CreateEffect(void)
{
ALuint effect = 0;
ALenum err;
printf("Using Convolution Reverb\n");
/* Create the effect object and set the convolution reverb effect type. */
alGenEffects(1, &effect);
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_CONVOLUTION_REVERB_SOFT);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL error: %s\n", alGetString(err));
if(alIsEffect(effect))
alDeleteEffects(1, &effect);
return 0;
}
return effect;
}
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
const char *namepart;
ALenum err, format;
ALuint buffer;
SNDFILE *sndfile;
SF_INFO sfinfo;
float *membuf;
sf_count_t num_frames;
ALsizei num_bytes;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(float))/sfinfo.channels)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Get the sound format, and figure out the OpenAL format. Use floats since
* impulse responses will usually have more than 16-bit precision.
*/
format = AL_NONE;
if(sfinfo.channels == 1)
format = AL_FORMAT_MONO_FLOAT32;
else if(sfinfo.channels == 2)
format = AL_FORMAT_STEREO_FLOAT32;
else if(sfinfo.channels == 3)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT2D_FLOAT32;
}
else if(sfinfo.channels == 4)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT3D_FLOAT32;
}
if(!format)
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
namepart = strrchr(filename, '/');
if(namepart || (namepart=strrchr(filename, '\\')))
namepart++;
else
namepart = filename;
printf("Loading: %s (%s, %dhz, %" PRId64 " samples / %.2f seconds)\n", namepart,
FormatName(format), sfinfo.samplerate, sfinfo.frames,
(double)sfinfo.frames / sfinfo.samplerate);
fflush(stdout);
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(float));
num_frames = sf_readf_float(sndfile, membuf, sfinfo.frames);
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(float);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char **argv)
{
ALuint ir_buffer, filter, effect, slot;
StreamPlayer *player;
int i;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] <impulse response file> "
"<[-dry | -nodry] filename>...\n", argv[0]);
return 1;
}
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
if(!alIsExtensionPresent("AL_SOFTX_convolution_reverb"))
{
CloseAL();
fprintf(stderr, "Error: Convolution revern not supported\n");
return 1;
}
if(argc < 2)
{
CloseAL();
fprintf(stderr, "Error: Missing impulse response or sound files\n");
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
LOAD_PROC(LPALGENFILTERS, alGenFilters);
LOAD_PROC(LPALDELETEFILTERS, alDeleteFilters);
LOAD_PROC(LPALISFILTER, alIsFilter);
LOAD_PROC(LPALFILTERI, alFilteri);
LOAD_PROC(LPALFILTERIV, alFilteriv);
LOAD_PROC(LPALFILTERF, alFilterf);
LOAD_PROC(LPALFILTERFV, alFilterfv);
LOAD_PROC(LPALGETFILTERI, alGetFilteri);
LOAD_PROC(LPALGETFILTERIV, alGetFilteriv);
LOAD_PROC(LPALGETFILTERF, alGetFilterf);
LOAD_PROC(LPALGETFILTERFV, alGetFilterfv);
LOAD_PROC(LPALGENEFFECTS, alGenEffects);
LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
LOAD_PROC(LPALISEFFECT, alIsEffect);
LOAD_PROC(LPALEFFECTI, alEffecti);
LOAD_PROC(LPALEFFECTIV, alEffectiv);
LOAD_PROC(LPALEFFECTF, alEffectf);
LOAD_PROC(LPALEFFECTFV, alEffectfv);
LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);
LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
#undef LOAD_PROC
/* Load the reverb into an effect. */
effect = CreateEffect();
if(!effect)
{
CloseAL();
return 1;
}
/* Load the impulse response sound into a buffer. */
ir_buffer = LoadSound(argv[0]);
if(!ir_buffer)
{
alDeleteEffects(1, &effect);
CloseAL();
return 1;
}
/* Create the effect slot object. This is what "plays" an effect on sources
* that connect to it.
*/
slot = 0;
alGenAuxiliaryEffectSlots(1, &slot);
/* Set the impulse response sound buffer on the effect slot. This allows
* effects to access it as needed. In this case, convolution reverb uses it
* as the filter source. NOTE: Unlike the effect object, the buffer *is*
* kept referenced and may not be changed or deleted as long as it's set,
* just like with a source. When another buffer is set, or the effect slot
* is deleted, the buffer reference is released.
*
* The effect slot's gain is reduced because the impulse responses I've
* tested with result in excessively loud reverb. Is that normal? Even with
* this, it seems a bit on the loud side.
*
* Also note: unlike standard or EAX reverb, there is no automatic
* attenuation of a source's reverb response with distance, so the reverb
* will remain full volume regardless of a given sound's distance from the
* listener. You can use a send filter to alter a given source's
* contribution to reverb.
*/
alAuxiliaryEffectSloti(slot, AL_BUFFER, (ALint)ir_buffer);
alAuxiliaryEffectSlotf(slot, AL_EFFECTSLOT_GAIN, 1.0f / 16.0f);
alAuxiliaryEffectSloti(slot, AL_EFFECTSLOT_EFFECT, (ALint)effect);
assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
/* Create a filter that can silence the dry path. */
filter = 0;
alGenFilters(1, &filter);
alFilteri(filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
alFilterf(filter, AL_LOWPASS_GAIN, 0.0f);
player = NewPlayer();
/* Connect the player's source to the effect slot. */
alSource3i(player->source, AL_AUXILIARY_SEND_FILTER, (ALint)slot, 0, AL_FILTER_NULL);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play each file listed on the command line */
for(i = 1;i < argc;i++)
{
const char *namepart;
if(argc-i > 1)
{
if(strcasecmp(argv[i], "-nodry") == 0)
{
alSourcei(player->source, AL_DIRECT_FILTER, (ALint)filter);
++i;
}
else if(strcasecmp(argv[i], "-dry") == 0)
{
alSourcei(player->source, AL_DIRECT_FILTER, AL_FILTER_NULL);
++i;
}
}
if(!OpenPlayerFile(player, argv[i]))
continue;
namepart = strrchr(argv[i], '/');
if(namepart || (namepart=strrchr(argv[i], '\\')))
namepart++;
else
namepart = argv[i];
printf("Playing: %s (%s, %dhz)\n", namepart, FormatName(player->format),
player->sfinfo.samplerate);
fflush(stdout);
if(!StartPlayer(player))
{
ClosePlayerFile(player);
continue;
}
while(UpdatePlayer(player))
al_nssleep(10000000);
ClosePlayerFile(player);
}
printf("Done.\n");
/* All files done. Delete the player and effect resources, and close down
* OpenAL.
*/
DeletePlayer(player);
player = NULL;
alDeleteAuxiliaryEffectSlots(1, &slot);
alDeleteEffects(1, &effect);
alDeleteFilters(1, &filter);
alDeleteBuffers(1, &ir_buffer);
CloseAL();
return 0;
}

File diff suppressed because it is too large Load Diff

302
externals/openal-soft/examples/alhrtf.c vendored Normal file
View File

@@ -0,0 +1,302 @@
/*
* OpenAL HRTF Example
*
* Copyright (c) 2015 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for selecting an HRTF. */
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
static LPALCGETSTRINGISOFT alcGetStringiSOFT;
static LPALCRESETDEVICESOFT alcResetDeviceSOFT;
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
ALenum err, format;
ALuint buffer;
SNDFILE *sndfile;
SF_INFO sfinfo;
short *membuf;
sf_count_t num_frames;
ALsizei num_bytes;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Get the sound format, and figure out the OpenAL format */
format = AL_NONE;
if(sfinfo.channels == 1)
format = AL_FORMAT_MONO16;
else if(sfinfo.channels == 2)
format = AL_FORMAT_STEREO16;
else if(sfinfo.channels == 3)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT2D_16;
}
else if(sfinfo.channels == 4)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT3D_16;
}
if(!format)
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char **argv)
{
ALCdevice *device;
ALCcontext *context;
ALboolean has_angle_ext;
ALuint source, buffer;
const char *soundname;
const char *hrtfname;
ALCint hrtf_state;
ALCint num_hrtf;
ALdouble angle;
ALenum state;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] [-hrtf <name>] <soundfile>\n", argv[0]);
return 1;
}
/* Initialize OpenAL, and check for HRTF support. */
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
context = alcGetCurrentContext();
device = alcGetContextsDevice(context);
if(!alcIsExtensionPresent(device, "ALC_SOFT_HRTF"))
{
fprintf(stderr, "Error: ALC_SOFT_HRTF not supported\n");
CloseAL();
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(d, T, x) ((x) = FUNCTION_CAST(T, alcGetProcAddress((d), #x)))
LOAD_PROC(device, LPALCGETSTRINGISOFT, alcGetStringiSOFT);
LOAD_PROC(device, LPALCRESETDEVICESOFT, alcResetDeviceSOFT);
#undef LOAD_PROC
/* Check for the AL_EXT_STEREO_ANGLES extension to be able to also rotate
* stereo sources.
*/
has_angle_ext = alIsExtensionPresent("AL_EXT_STEREO_ANGLES");
printf("AL_EXT_STEREO_ANGLES %sfound\n", has_angle_ext?"":"not ");
/* Check for user-preferred HRTF */
if(strcmp(argv[0], "-hrtf") == 0)
{
hrtfname = argv[1];
soundname = argv[2];
}
else
{
hrtfname = NULL;
soundname = argv[0];
}
/* Enumerate available HRTFs, and reset the device using one. */
alcGetIntegerv(device, ALC_NUM_HRTF_SPECIFIERS_SOFT, 1, &num_hrtf);
if(!num_hrtf)
printf("No HRTFs found\n");
else
{
ALCint attr[5];
ALCint index = -1;
ALCint i;
printf("Available HRTFs:\n");
for(i = 0;i < num_hrtf;i++)
{
const ALCchar *name = alcGetStringiSOFT(device, ALC_HRTF_SPECIFIER_SOFT, i);
printf(" %d: %s\n", i, name);
/* Check if this is the HRTF the user requested. */
if(hrtfname && strcmp(name, hrtfname) == 0)
index = i;
}
i = 0;
attr[i++] = ALC_HRTF_SOFT;
attr[i++] = ALC_TRUE;
if(index == -1)
{
if(hrtfname)
printf("HRTF \"%s\" not found\n", hrtfname);
printf("Using default HRTF...\n");
}
else
{
printf("Selecting HRTF %d...\n", index);
attr[i++] = ALC_HRTF_ID_SOFT;
attr[i++] = index;
}
attr[i] = 0;
if(!alcResetDeviceSOFT(device, attr))
printf("Failed to reset device: %s\n", alcGetString(device, alcGetError(device)));
}
/* Check if HRTF is enabled, and show which is being used. */
alcGetIntegerv(device, ALC_HRTF_SOFT, 1, &hrtf_state);
if(!hrtf_state)
printf("HRTF not enabled!\n");
else
{
const ALchar *name = alcGetString(device, ALC_HRTF_SPECIFIER_SOFT);
printf("HRTF enabled, using %s\n", name);
}
fflush(stdout);
/* Load the sound into a buffer. */
buffer = LoadSound(soundname);
if(!buffer)
{
CloseAL();
return 1;
}
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_SOURCE_RELATIVE, AL_TRUE);
alSource3f(source, AL_POSITION, 0.0f, 0.0f, -1.0f);
alSourcei(source, AL_BUFFER, (ALint)buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound until it finishes. */
angle = 0.0;
alSourcePlay(source);
do {
al_nssleep(10000000);
alcSuspendContext(context);
/* Rotate the source around the listener by about 1/4 cycle per second,
* and keep it within -pi...+pi.
*/
angle += 0.01 * M_PI * 0.5;
if(angle > M_PI)
angle -= M_PI*2.0;
/* This only rotates mono sounds. */
alSource3f(source, AL_POSITION, (ALfloat)sin(angle), 0.0f, -(ALfloat)cos(angle));
if(has_angle_ext)
{
/* This rotates stereo sounds with the AL_EXT_STEREO_ANGLES
* extension. Angles are specified counter-clockwise in radians.
*/
ALfloat angles[2] = { (ALfloat)(M_PI/6.0 - angle), (ALfloat)(-M_PI/6.0 - angle) };
alSourcefv(source, AL_STEREO_ANGLES, angles);
}
alcProcessContext(context);
alGetSourcei(source, AL_SOURCE_STATE, &state);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
/* All done. Delete resources, and close down OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
CloseAL();
return 0;
}

View File

@@ -0,0 +1,217 @@
/*
* OpenAL Source Latency Example
*
* Copyright (c) 2012 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for checking the latency of a sound. */
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
static LPALSOURCEDSOFT alSourcedSOFT;
static LPALSOURCE3DSOFT alSource3dSOFT;
static LPALSOURCEDVSOFT alSourcedvSOFT;
static LPALGETSOURCEDSOFT alGetSourcedSOFT;
static LPALGETSOURCE3DSOFT alGetSource3dSOFT;
static LPALGETSOURCEDVSOFT alGetSourcedvSOFT;
static LPALSOURCEI64SOFT alSourcei64SOFT;
static LPALSOURCE3I64SOFT alSource3i64SOFT;
static LPALSOURCEI64VSOFT alSourcei64vSOFT;
static LPALGETSOURCEI64SOFT alGetSourcei64SOFT;
static LPALGETSOURCE3I64SOFT alGetSource3i64SOFT;
static LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
ALenum err, format;
ALuint buffer;
SNDFILE *sndfile;
SF_INFO sfinfo;
short *membuf;
sf_count_t num_frames;
ALsizei num_bytes;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Get the sound format, and figure out the OpenAL format */
format = AL_NONE;
if(sfinfo.channels == 1)
format = AL_FORMAT_MONO16;
else if(sfinfo.channels == 2)
format = AL_FORMAT_STEREO16;
else if(sfinfo.channels == 3)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT2D_16;
}
else if(sfinfo.channels == 4)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT3D_16;
}
if(!format)
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char **argv)
{
ALuint source, buffer;
ALdouble offsets[2];
ALenum state;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] <filename>\n", argv[0]);
return 1;
}
/* Initialize OpenAL, and check for source_latency support. */
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
if(!alIsExtensionPresent("AL_SOFT_source_latency"))
{
fprintf(stderr, "Error: AL_SOFT_source_latency not supported\n");
CloseAL();
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
LOAD_PROC(LPALSOURCEDSOFT, alSourcedSOFT);
LOAD_PROC(LPALSOURCE3DSOFT, alSource3dSOFT);
LOAD_PROC(LPALSOURCEDVSOFT, alSourcedvSOFT);
LOAD_PROC(LPALGETSOURCEDSOFT, alGetSourcedSOFT);
LOAD_PROC(LPALGETSOURCE3DSOFT, alGetSource3dSOFT);
LOAD_PROC(LPALGETSOURCEDVSOFT, alGetSourcedvSOFT);
LOAD_PROC(LPALSOURCEI64SOFT, alSourcei64SOFT);
LOAD_PROC(LPALSOURCE3I64SOFT, alSource3i64SOFT);
LOAD_PROC(LPALSOURCEI64VSOFT, alSourcei64vSOFT);
LOAD_PROC(LPALGETSOURCEI64SOFT, alGetSourcei64SOFT);
LOAD_PROC(LPALGETSOURCE3I64SOFT, alGetSource3i64SOFT);
LOAD_PROC(LPALGETSOURCEI64VSOFT, alGetSourcei64vSOFT);
#undef LOAD_PROC
/* Load the sound into a buffer. */
buffer = LoadSound(argv[0]);
if(!buffer)
{
CloseAL();
return 1;
}
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, (ALint)buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound until it finishes. */
alSourcePlay(source);
do {
al_nssleep(10000000);
alGetSourcei(source, AL_SOURCE_STATE, &state);
/* Get the source offset and latency. AL_SEC_OFFSET_LATENCY_SOFT will
* place the offset (in seconds) in offsets[0], and the time until that
* offset will be heard (in seconds) in offsets[1]. */
alGetSourcedvSOFT(source, AL_SEC_OFFSET_LATENCY_SOFT, offsets);
printf("\rOffset: %f - Latency:%3u ms ", offsets[0], (ALuint)(offsets[1]*1000));
fflush(stdout);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
printf("\n");
/* All done. Delete resources, and close down OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
CloseAL();
return 0;
}

View File

@@ -0,0 +1,293 @@
/*
* OpenAL Loopback Example
*
* Copyright (c) 2013 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for using the loopback device for custom
* output handling.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#define SDL_MAIN_HANDLED
#include "SDL.h"
#include "SDL_audio.h"
#include "SDL_error.h"
#include "SDL_stdinc.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#ifndef SDL_AUDIO_MASK_BITSIZE
#define SDL_AUDIO_MASK_BITSIZE (0xFF)
#endif
#ifndef SDL_AUDIO_BITSIZE
#define SDL_AUDIO_BITSIZE(x) (x & SDL_AUDIO_MASK_BITSIZE)
#endif
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
typedef struct {
ALCdevice *Device;
ALCcontext *Context;
ALCsizei FrameSize;
} PlaybackInfo;
static LPALCLOOPBACKOPENDEVICESOFT alcLoopbackOpenDeviceSOFT;
static LPALCISRENDERFORMATSUPPORTEDSOFT alcIsRenderFormatSupportedSOFT;
static LPALCRENDERSAMPLESSOFT alcRenderSamplesSOFT;
void SDLCALL RenderSDLSamples(void *userdata, Uint8 *stream, int len)
{
PlaybackInfo *playback = (PlaybackInfo*)userdata;
alcRenderSamplesSOFT(playback->Device, stream, len/playback->FrameSize);
}
static const char *ChannelsName(ALCenum chans)
{
switch(chans)
{
case ALC_MONO_SOFT: return "Mono";
case ALC_STEREO_SOFT: return "Stereo";
case ALC_QUAD_SOFT: return "Quadraphonic";
case ALC_5POINT1_SOFT: return "5.1 Surround";
case ALC_6POINT1_SOFT: return "6.1 Surround";
case ALC_7POINT1_SOFT: return "7.1 Surround";
}
return "Unknown Channels";
}
static const char *TypeName(ALCenum type)
{
switch(type)
{
case ALC_BYTE_SOFT: return "S8";
case ALC_UNSIGNED_BYTE_SOFT: return "U8";
case ALC_SHORT_SOFT: return "S16";
case ALC_UNSIGNED_SHORT_SOFT: return "U16";
case ALC_INT_SOFT: return "S32";
case ALC_UNSIGNED_INT_SOFT: return "U32";
case ALC_FLOAT_SOFT: return "Float32";
}
return "Unknown Type";
}
/* Creates a one second buffer containing a sine wave, and returns the new
* buffer ID. */
static ALuint CreateSineWave(void)
{
ALshort data[44100*4];
ALuint buffer;
ALenum err;
ALuint i;
for(i = 0;i < 44100*4;i++)
data[i] = (ALshort)(sin(i/44100.0 * 1000.0 * 2.0*M_PI) * 32767.0);
/* Buffer the audio data into a new buffer object. */
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, AL_FORMAT_MONO16, data, sizeof(data), 44100);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char *argv[])
{
PlaybackInfo playback = { NULL, NULL, 0 };
SDL_AudioSpec desired, obtained;
ALuint source, buffer;
ALCint attrs[16];
ALenum state;
(void)argc;
(void)argv;
SDL_SetMainReady();
/* Print out error if extension is missing. */
if(!alcIsExtensionPresent(NULL, "ALC_SOFT_loopback"))
{
fprintf(stderr, "Error: ALC_SOFT_loopback not supported!\n");
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alcGetProcAddress(NULL, #x)))
LOAD_PROC(LPALCLOOPBACKOPENDEVICESOFT, alcLoopbackOpenDeviceSOFT);
LOAD_PROC(LPALCISRENDERFORMATSUPPORTEDSOFT, alcIsRenderFormatSupportedSOFT);
LOAD_PROC(LPALCRENDERSAMPLESSOFT, alcRenderSamplesSOFT);
#undef LOAD_PROC
if(SDL_Init(SDL_INIT_AUDIO) == -1)
{
fprintf(stderr, "Failed to init SDL audio: %s\n", SDL_GetError());
return 1;
}
/* Set up SDL audio with our requested format and callback. */
desired.channels = 2;
desired.format = AUDIO_S16SYS;
desired.freq = 44100;
desired.padding = 0;
desired.samples = 4096;
desired.callback = RenderSDLSamples;
desired.userdata = &playback;
if(SDL_OpenAudio(&desired, &obtained) != 0)
{
SDL_Quit();
fprintf(stderr, "Failed to open SDL audio: %s\n", SDL_GetError());
return 1;
}
/* Set up our OpenAL attributes based on what we got from SDL. */
attrs[0] = ALC_FORMAT_CHANNELS_SOFT;
if(obtained.channels == 1)
attrs[1] = ALC_MONO_SOFT;
else if(obtained.channels == 2)
attrs[1] = ALC_STEREO_SOFT;
else
{
fprintf(stderr, "Unhandled SDL channel count: %d\n", obtained.channels);
goto error;
}
attrs[2] = ALC_FORMAT_TYPE_SOFT;
if(obtained.format == AUDIO_U8)
attrs[3] = ALC_UNSIGNED_BYTE_SOFT;
else if(obtained.format == AUDIO_S8)
attrs[3] = ALC_BYTE_SOFT;
else if(obtained.format == AUDIO_U16SYS)
attrs[3] = ALC_UNSIGNED_SHORT_SOFT;
else if(obtained.format == AUDIO_S16SYS)
attrs[3] = ALC_SHORT_SOFT;
else if(obtained.format == AUDIO_S32SYS)
attrs[3] = ALC_INT_SOFT;
else if(obtained.format == AUDIO_F32SYS)
attrs[3] = ALC_FLOAT_SOFT;
else
{
fprintf(stderr, "Unhandled SDL format: 0x%04x\n", obtained.format);
goto error;
}
attrs[4] = ALC_FREQUENCY;
attrs[5] = obtained.freq;
attrs[6] = 0; /* end of list */
playback.FrameSize = obtained.channels * SDL_AUDIO_BITSIZE(obtained.format) / 8;
/* Initialize OpenAL loopback device, using our format attributes. */
playback.Device = alcLoopbackOpenDeviceSOFT(NULL);
if(!playback.Device)
{
fprintf(stderr, "Failed to open loopback device!\n");
goto error;
}
/* Make sure the format is supported before setting them on the device. */
if(alcIsRenderFormatSupportedSOFT(playback.Device, attrs[5], attrs[1], attrs[3]) == ALC_FALSE)
{
fprintf(stderr, "Render format not supported: %s, %s, %dhz\n",
ChannelsName(attrs[1]), TypeName(attrs[3]), attrs[5]);
goto error;
}
playback.Context = alcCreateContext(playback.Device, attrs);
if(!playback.Context || alcMakeContextCurrent(playback.Context) == ALC_FALSE)
{
fprintf(stderr, "Failed to set an OpenAL audio context\n");
goto error;
}
/* Start SDL playing. Our callback (thus alcRenderSamplesSOFT) will now
* start being called regularly to update the AL playback state. */
SDL_PauseAudio(0);
/* Load the sound into a buffer. */
buffer = CreateSineWave();
if(!buffer)
{
SDL_CloseAudio();
alcDestroyContext(playback.Context);
alcCloseDevice(playback.Device);
SDL_Quit();
return 1;
}
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, (ALint)buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound until it finishes. */
alSourcePlay(source);
do {
al_nssleep(10000000);
alGetSourcei(source, AL_SOURCE_STATE, &state);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
/* All done. Delete resources, and close OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
/* Stop SDL playing. */
SDL_PauseAudio(1);
/* Close up OpenAL and SDL. */
SDL_CloseAudio();
alcDestroyContext(playback.Context);
alcCloseDevice(playback.Device);
SDL_Quit();
return 0;
error:
SDL_CloseAudio();
if(playback.Context)
alcDestroyContext(playback.Context);
if(playback.Device)
alcCloseDevice(playback.Device);
SDL_Quit();
return 1;
}

View File

@@ -0,0 +1,688 @@
/*
* OpenAL Multi-Zone Reverb Example
*
* Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for controlling multiple reverb zones to
* smoothly transition between reverb environments. The general concept is to
* extend single-reverb by also tracking the closest adjacent environment, and
* utilize EAX Reverb's panning vectors to position them relative to the
* listener.
*/
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/efx.h"
#include "AL/efx-presets.h"
#include "common/alhelpers.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* Filter object functions */
static LPALGENFILTERS alGenFilters;
static LPALDELETEFILTERS alDeleteFilters;
static LPALISFILTER alIsFilter;
static LPALFILTERI alFilteri;
static LPALFILTERIV alFilteriv;
static LPALFILTERF alFilterf;
static LPALFILTERFV alFilterfv;
static LPALGETFILTERI alGetFilteri;
static LPALGETFILTERIV alGetFilteriv;
static LPALGETFILTERF alGetFilterf;
static LPALGETFILTERFV alGetFilterfv;
/* Effect object functions */
static LPALGENEFFECTS alGenEffects;
static LPALDELETEEFFECTS alDeleteEffects;
static LPALISEFFECT alIsEffect;
static LPALEFFECTI alEffecti;
static LPALEFFECTIV alEffectiv;
static LPALEFFECTF alEffectf;
static LPALEFFECTFV alEffectfv;
static LPALGETEFFECTI alGetEffecti;
static LPALGETEFFECTIV alGetEffectiv;
static LPALGETEFFECTF alGetEffectf;
static LPALGETEFFECTFV alGetEffectfv;
/* Auxiliary Effect Slot object functions */
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
/* LoadEffect loads the given initial reverb properties into the given OpenAL
* effect object, and returns non-zero on success.
*/
static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
{
ALenum err;
alGetError();
/* Prepare the effect for EAX Reverb (standard reverb doesn't contain
* the needed panning vectors).
*/
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
if((err=alGetError()) != AL_NO_ERROR)
{
fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
return 0;
}
/* Load the reverb properties. */
alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
/* Check if an error occured, and return failure if so. */
if((err=alGetError()) != AL_NO_ERROR)
{
fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
return 0;
}
return 1;
}
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
ALenum err, format;
ALuint buffer;
SNDFILE *sndfile;
SF_INFO sfinfo;
short *membuf;
sf_count_t num_frames;
ALsizei num_bytes;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Get the sound format, and figure out the OpenAL format */
if(sfinfo.channels == 1)
format = AL_FORMAT_MONO16;
else if(sfinfo.channels == 2)
format = AL_FORMAT_STEREO16;
else
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
/* Helper to calculate the dot-product of the two given vectors. */
static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
{
return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
}
/* Helper to normalize a given vector. */
static void normalize(ALfloat vec[3])
{
ALfloat mag = sqrtf(dot_product(vec, vec));
if(mag > 0.00001f)
{
vec[0] /= mag;
vec[1] /= mag;
vec[2] /= mag;
}
else
{
vec[0] = 0.0f;
vec[1] = 0.0f;
vec[2] = 0.0f;
}
}
/* The main update function to update the listener and environment effects. */
static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
{
static const ALfloat listener_move_scale = 10.0f;
/* Individual reverb zones are connected via "portals". Each portal has a
* position (center point of the connecting area), a normal (facing
* direction), and a radius (approximate size of the connecting area).
*/
const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
const ALfloat portal_radius = 2.5f;
ALfloat other_dir[3], this_dir[3];
ALfloat listener_pos[3];
ALfloat local_norm[3];
ALfloat local_dir[3];
ALfloat near_edge[3];
ALfloat far_edge[3];
ALfloat dist, edist;
/* Update the listener position for the amount of time passed. This uses a
* simple triangular LFO to offset the position (moves along the X axis
* between -listener_move_scale and +listener_move_scale for each
* transition).
*/
listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
listener_pos[1] = 0.0f;
listener_pos[2] = 0.0f;
alListenerfv(AL_POSITION, listener_pos);
/* Calculate local_dir, which represents the listener-relative point to the
* adjacent zone (should also include orientation). Because EAX Reverb uses
* left-handed coordinates instead of right-handed like the rest of OpenAL,
* negate Z for the local values.
*/
local_dir[0] = portal_pos[0] - listener_pos[0];
local_dir[1] = portal_pos[1] - listener_pos[1];
local_dir[2] = -(portal_pos[2] - listener_pos[2]);
/* A normal application would also rotate the portal's normal given the
* listener orientation, to get the listener-relative normal.
*/
local_norm[0] = portal_norm[0];
local_norm[1] = portal_norm[1];
local_norm[2] = -portal_norm[2];
/* Calculate the distance from the listener to the portal, and ensure it's
* far enough away to not suffer severe floating-point precision issues.
*/
dist = sqrtf(dot_product(local_dir, local_dir));
if(dist > 0.00001f)
{
const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
ALuint other_effect, this_effect;
ALfloat magnitude, dir_dot_norm;
/* Normalize the direction to the portal. */
local_dir[0] /= dist;
local_dir[1] /= dist;
local_dir[2] /= dist;
/* Calculate the dot product of the portal's local direction and local
* normal, which is used for angular and side checks later on.
*/
dir_dot_norm = dot_product(local_dir, local_norm);
/* Figure out which zone we're in. */
if(dir_dot_norm <= 0.0f)
{
/* We're in front of the portal, so we're in Zone 0. */
this_effect = effects[0];
other_effect = effects[1];
this_reverb = &reverbs[0];
other_reverb = &reverbs[1];
}
else
{
/* We're behind the portal, so we're in Zone 1. */
this_effect = effects[1];
other_effect = effects[0];
this_reverb = &reverbs[1];
other_reverb = &reverbs[0];
}
/* Calculate the listener-relative extents of the portal. */
/* First, project the listener-to-portal vector onto the portal's plane
* to get the portal-relative direction along the plane that goes away
* from the listener (toward the farthest edge of the portal).
*/
far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
edist = sqrtf(dot_product(far_edge, far_edge));
if(edist > 0.0001f)
{
/* Rescale the portal-relative vector to be at the radius edge. */
ALfloat mag = portal_radius / edist;
far_edge[0] *= mag;
far_edge[1] *= mag;
far_edge[2] *= mag;
/* Calculate the closest edge of the portal by negating the
* farthest, and add an offset to make them both relative to the
* listener.
*/
near_edge[0] = local_dir[0]*dist - far_edge[0];
near_edge[1] = local_dir[1]*dist - far_edge[1];
near_edge[2] = local_dir[2]*dist - far_edge[2];
far_edge[0] += local_dir[0]*dist;
far_edge[1] += local_dir[1]*dist;
far_edge[2] += local_dir[2]*dist;
/* Normalize the listener-relative extents of the portal, then
* calculate the panning magnitude for the other zone given the
* apparent size of the opening. The panning magnitude affects the
* envelopment of the environment, with 1 being a point, 0.5 being
* half coverage around the listener, and 0 being full coverage.
*/
normalize(far_edge);
normalize(near_edge);
magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
/* Recalculate the panning direction, to be directly between the
* direction of the two extents.
*/
local_dir[0] = far_edge[0] + near_edge[0];
local_dir[1] = far_edge[1] + near_edge[1];
local_dir[2] = far_edge[2] + near_edge[2];
normalize(local_dir);
}
else
{
/* If we get here, the listener is directly in front of or behind
* the center of the portal, making all aperture edges effectively
* equidistant. Calculating the panning magnitude is simplified,
* using the arctangent of the radius and distance.
*/
magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
}
/* Scale the other zone's panning vector. */
other_dir[0] = local_dir[0] * magnitude;
other_dir[1] = local_dir[1] * magnitude;
other_dir[2] = local_dir[2] * magnitude;
/* Pan the current zone to the opposite direction of the portal, and
* take the remaining percentage of the portal's magnitude.
*/
this_dir[0] = local_dir[0] * (magnitude-1.0f);
this_dir[1] = local_dir[1] * (magnitude-1.0f);
this_dir[2] = local_dir[2] * (magnitude-1.0f);
/* Now set the effects' panning vectors and gain. Energy is shared
* between environments, so attenuate according to each zone's
* contribution (note: gain^2 = energy).
*/
alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
}
else
{
/* We're practically in the center of the portal. Give the panning
* vectors a 50/50 split, with Zone 0 covering the half in front of
* the normal, and Zone 1 covering the half behind.
*/
this_dir[0] = local_norm[0] / 2.0f;
this_dir[1] = local_norm[1] / 2.0f;
this_dir[2] = local_norm[2] / 2.0f;
other_dir[0] = local_norm[0] / -2.0f;
other_dir[1] = local_norm[1] / -2.0f;
other_dir[2] = local_norm[2] / -2.0f;
alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
}
/* Finally, update the effect slots with the updated effect parameters. */
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
}
int main(int argc, char **argv)
{
static const int MaxTransitions = 8;
EFXEAXREVERBPROPERTIES reverbs[2] = {
EFX_REVERB_PRESET_CARPETEDHALLWAY,
EFX_REVERB_PRESET_BATHROOM
};
ALCdevice *device = NULL;
ALCcontext *context = NULL;
ALuint effects[2] = { 0, 0 };
ALuint slots[2] = { 0, 0 };
ALuint direct_filter = 0;
ALuint buffer = 0;
ALuint source = 0;
ALCint num_sends = 0;
ALenum state = AL_INITIAL;
ALfloat direct_gain = 1.0f;
int basetime = 0;
int loops = 0;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
"Options:\n"
"\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
argv[0]);
return 1;
}
/* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
* sends (if multiple sends are supported, 2 are provided by default; if
* you want more, you have to request it through alcCreateContext).
*/
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
while(argc > 0)
{
if(strcmp(argv[0], "-nodirect") == 0)
direct_gain = 0.0f;
else
break;
argv++;
argc--;
}
if(argc < 1)
{
fprintf(stderr, "No filename spacified.\n");
CloseAL();
return 1;
}
context = alcGetCurrentContext();
device = alcGetContextsDevice(context);
if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
{
fprintf(stderr, "Error: EFX not supported\n");
CloseAL();
return 1;
}
num_sends = 0;
alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
{
fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
num_sends);
CloseAL();
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
LOAD_PROC(LPALGENFILTERS, alGenFilters);
LOAD_PROC(LPALDELETEFILTERS, alDeleteFilters);
LOAD_PROC(LPALISFILTER, alIsFilter);
LOAD_PROC(LPALFILTERI, alFilteri);
LOAD_PROC(LPALFILTERIV, alFilteriv);
LOAD_PROC(LPALFILTERF, alFilterf);
LOAD_PROC(LPALFILTERFV, alFilterfv);
LOAD_PROC(LPALGETFILTERI, alGetFilteri);
LOAD_PROC(LPALGETFILTERIV, alGetFilteriv);
LOAD_PROC(LPALGETFILTERF, alGetFilterf);
LOAD_PROC(LPALGETFILTERFV, alGetFilterfv);
LOAD_PROC(LPALGENEFFECTS, alGenEffects);
LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
LOAD_PROC(LPALISEFFECT, alIsEffect);
LOAD_PROC(LPALEFFECTI, alEffecti);
LOAD_PROC(LPALEFFECTIV, alEffectiv);
LOAD_PROC(LPALEFFECTF, alEffectf);
LOAD_PROC(LPALEFFECTFV, alEffectfv);
LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);
LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
#undef LOAD_PROC
/* Load the sound into a buffer. */
buffer = LoadSound(argv[0]);
if(!buffer)
{
CloseAL();
return 1;
}
/* Generate two effects for two "zones", and load a reverb into each one.
* Note that unlike single-zone reverb, where you can store one effect per
* preset, for multi-zone reverb you should have one effect per environment
* instance, or one per audible zone. This is because we'll be changing the
* effects' properties in real-time based on the environment instance
* relative to the listener.
*/
alGenEffects(2, effects);
if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
{
alDeleteEffects(2, effects);
alDeleteBuffers(1, &buffer);
CloseAL();
return 1;
}
/* Create the effect slot objects, one for each "active" effect. */
alGenAuxiliaryEffectSlots(2, slots);
/* Tell the effect slots to use the loaded effect objects, with slot 0 for
* Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
* effect properties. Modifying or deleting the effect object afterward
* won't directly affect the effect slot until they're reapplied like this.
*/
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
/* For the purposes of this example, prepare a filter that optionally
* silences the direct path which allows us to hear just the reverberation.
* A filter like this is normally used for obstruction, where the path
* directly between the listener and source is blocked (the exact
* properties depending on the type and thickness of the obstructing
* material).
*/
alGenFilters(1, &direct_filter);
alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
/* Create the source to play the sound with, place it in front of the
* listener's path in the left zone.
*/
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_LOOPING, AL_TRUE);
alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
alSourcei(source, AL_DIRECT_FILTER, (ALint)direct_filter);
alSourcei(source, AL_BUFFER, (ALint)buffer);
/* Connect the source to the effect slots. Here, we connect source send 0
* to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
* to occlude the source from each zone by varying amounts; for example, a
* source within a particular zone would be unfiltered, while a source that
* can only see a zone through a window or thin wall may be attenuated for
* that zone.
*/
alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[0], 0, AL_FILTER_NULL);
alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[1], 1, AL_FILTER_NULL);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Get the current time as the base for timing in the main loop. */
basetime = altime_get();
loops = 0;
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
/* Play the sound for a while. */
alSourcePlay(source);
do {
int curtime;
ALfloat timediff;
/* Start a batch update, to ensure all changes apply simultaneously. */
alcSuspendContext(context);
/* Get the current time to track the amount of time that passed.
* Convert the difference to seconds.
*/
curtime = altime_get();
timediff = (float)(curtime - basetime) / 1000.0f;
/* Avoid negative time deltas, in case of non-monotonic clocks. */
if(timediff < 0.0f)
timediff = 0.0f;
else while(timediff >= 4.0f*(float)((loops&1)+1))
{
/* For this example, each transition occurs over 4 seconds, and
* there's 2 transitions per cycle.
*/
if(++loops < MaxTransitions)
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
if(!(loops&1))
{
/* Cycle completed. Decrease the delta and increase the base
* time to start a new cycle.
*/
timediff -= 8.0f;
basetime += 8000;
}
}
/* Update the listener and effects, and finish the batch. */
UpdateListenerAndEffects(timediff, slots, effects, reverbs);
alcProcessContext(context);
al_nssleep(10000000);
alGetSourcei(source, AL_SOURCE_STATE, &state);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
/* All done. Delete resources, and close down OpenAL. */
alDeleteSources(1, &source);
alDeleteAuxiliaryEffectSlots(2, slots);
alDeleteEffects(2, effects);
alDeleteFilters(1, &direct_filter);
alDeleteBuffers(1, &buffer);
CloseAL();
return 0;
}

335
externals/openal-soft/examples/alplay.c vendored Normal file
View File

@@ -0,0 +1,335 @@
/*
* OpenAL Source Play Example
*
* Copyright (c) 2017 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for playing a sound buffer. */
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
enum FormatType {
Int16,
Float,
IMA4,
MSADPCM
};
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
enum FormatType sample_format = Int16;
ALint byteblockalign = 0;
ALint splblockalign = 0;
sf_count_t num_frames;
ALenum err, format;
ALsizei num_bytes;
SNDFILE *sndfile;
SF_INFO sfinfo;
ALuint buffer;
void *membuf;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Detect a suitable format to load. Formats like Vorbis and Opus use float
* natively, so load as float to avoid clipping when possible. Formats
* larger than 16-bit can also use float to preserve a bit more precision.
*/
switch((sfinfo.format&SF_FORMAT_SUBMASK))
{
case SF_FORMAT_PCM_24:
case SF_FORMAT_PCM_32:
case SF_FORMAT_FLOAT:
case SF_FORMAT_DOUBLE:
case SF_FORMAT_VORBIS:
case SF_FORMAT_OPUS:
case SF_FORMAT_ALAC_20:
case SF_FORMAT_ALAC_24:
case SF_FORMAT_ALAC_32:
case 0x0080/*SF_FORMAT_MPEG_LAYER_I*/:
case 0x0081/*SF_FORMAT_MPEG_LAYER_II*/:
case 0x0082/*SF_FORMAT_MPEG_LAYER_III*/:
if(alIsExtensionPresent("AL_EXT_FLOAT32"))
sample_format = Float;
break;
case SF_FORMAT_IMA_ADPCM:
/* ADPCM formats require setting a block alignment as specified in the
* file, which needs to be read from the wave 'fmt ' chunk manually
* since libsndfile doesn't provide it in a format-agnostic way.
*/
if(sfinfo.channels <= 2 && (sfinfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_EXT_IMA4")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
sample_format = IMA4;
break;
case SF_FORMAT_MS_ADPCM:
if(sfinfo.channels <= 2 && (sfinfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_SOFT_MSADPCM")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
sample_format = MSADPCM;
break;
}
if(sample_format == IMA4 || sample_format == MSADPCM)
{
/* For ADPCM, lookup the wave file's "fmt " chunk, which is a
* WAVEFORMATEX-based structure for the audio format.
*/
SF_CHUNK_INFO inf = { "fmt ", 4, 0, NULL };
SF_CHUNK_ITERATOR *iter = sf_get_chunk_iterator(sndfile, &inf);
/* If there's an issue getting the chunk or block alignment, load as
* 16-bit and have libsndfile do the conversion.
*/
if(!iter || sf_get_chunk_size(iter, &inf) != SF_ERR_NO_ERROR || inf.datalen < 14)
sample_format = Int16;
else
{
ALubyte *fmtbuf = calloc(inf.datalen, 1);
inf.data = fmtbuf;
if(sf_get_chunk_data(iter, &inf) != SF_ERR_NO_ERROR)
sample_format = Int16;
else
{
/* Read the nBlockAlign field, and convert from bytes- to
* samples-per-block (verifying it's valid by converting back
* and comparing to the original value).
*/
byteblockalign = fmtbuf[12] | (fmtbuf[13]<<8);
if(sample_format == IMA4)
{
splblockalign = (byteblockalign/sfinfo.channels - 4)/4*8 + 1;
if(splblockalign < 1
|| ((splblockalign-1)/2 + 4)*sfinfo.channels != byteblockalign)
sample_format = Int16;
}
else
{
splblockalign = (byteblockalign/sfinfo.channels - 7)*2 + 2;
if(splblockalign < 2
|| ((splblockalign-2)/2 + 7)*sfinfo.channels != byteblockalign)
sample_format = Int16;
}
}
free(fmtbuf);
}
}
if(sample_format == Int16)
{
splblockalign = 1;
byteblockalign = sfinfo.channels * 2;
}
else if(sample_format == Float)
{
splblockalign = 1;
byteblockalign = sfinfo.channels * 4;
}
/* Figure out the OpenAL format from the file and desired sample type. */
format = AL_NONE;
if(sfinfo.channels == 1)
{
if(sample_format == Int16)
format = AL_FORMAT_MONO16;
else if(sample_format == Float)
format = AL_FORMAT_MONO_FLOAT32;
else if(sample_format == IMA4)
format = AL_FORMAT_MONO_IMA4;
else if(sample_format == MSADPCM)
format = AL_FORMAT_MONO_MSADPCM_SOFT;
}
else if(sfinfo.channels == 2)
{
if(sample_format == Int16)
format = AL_FORMAT_STEREO16;
else if(sample_format == Float)
format = AL_FORMAT_STEREO_FLOAT32;
else if(sample_format == IMA4)
format = AL_FORMAT_STEREO_IMA4;
else if(sample_format == MSADPCM)
format = AL_FORMAT_STEREO_MSADPCM_SOFT;
}
else if(sfinfo.channels == 3)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(sample_format == Int16)
format = AL_FORMAT_BFORMAT2D_16;
else if(sample_format == Float)
format = AL_FORMAT_BFORMAT2D_FLOAT32;
}
}
else if(sfinfo.channels == 4)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(sample_format == Int16)
format = AL_FORMAT_BFORMAT3D_16;
else if(sample_format == Float)
format = AL_FORMAT_BFORMAT3D_FLOAT32;
}
}
if(!format)
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
if(sfinfo.frames/splblockalign > (sf_count_t)(INT_MAX/byteblockalign))
{
fprintf(stderr, "Too many samples in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames / splblockalign * byteblockalign));
if(sample_format == Int16)
num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
else if(sample_format == Float)
num_frames = sf_readf_float(sndfile, membuf, sfinfo.frames);
else
{
sf_count_t count = sfinfo.frames / splblockalign * byteblockalign;
num_frames = sf_read_raw(sndfile, membuf, count);
if(num_frames > 0)
num_frames = num_frames / byteblockalign * splblockalign;
}
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames / splblockalign * byteblockalign);
printf("Loading: %s (%s, %dhz)\n", filename, FormatName(format), sfinfo.samplerate);
fflush(stdout);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
if(splblockalign > 1)
alBufferi(buffer, AL_UNPACK_BLOCK_ALIGNMENT_SOFT, splblockalign);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char **argv)
{
ALuint source, buffer;
ALfloat offset;
ALenum state;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] <filename>\n", argv[0]);
return 1;
}
/* Initialize OpenAL. */
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
/* Load the sound into a buffer. */
buffer = LoadSound(argv[0]);
if(!buffer)
{
CloseAL();
return 1;
}
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, (ALint)buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound until it finishes. */
alSourcePlay(source);
do {
al_nssleep(10000000);
alGetSourcei(source, AL_SOURCE_STATE, &state);
/* Get the source offset. */
alGetSourcef(source, AL_SEC_OFFSET, &offset);
printf("\rOffset: %f ", offset);
fflush(stdout);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
printf("\n");
/* All done. Delete resources, and close down OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
CloseAL();
return 0;
}

View File

@@ -0,0 +1,403 @@
/*
* OpenAL Recording Example
*
* Copyright (c) 2017 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains a relatively simple recorder. */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#include "win_main_utf8.h"
#if defined(_WIN64)
#define SZFMT "%I64u"
#elif defined(_WIN32)
#define SZFMT "%u"
#else
#define SZFMT "%zu"
#endif
#if defined(_MSC_VER) && (_MSC_VER < 1900)
static float msvc_strtof(const char *str, char **end)
{ return (float)strtod(str, end); }
#define strtof msvc_strtof
#endif
static void fwrite16le(ALushort val, FILE *f)
{
ALubyte data[2];
data[0] = (ALubyte)(val&0xff);
data[1] = (ALubyte)(val>>8);
fwrite(data, 1, 2, f);
}
static void fwrite32le(ALuint val, FILE *f)
{
ALubyte data[4];
data[0] = (ALubyte)(val&0xff);
data[1] = (ALubyte)((val>>8)&0xff);
data[2] = (ALubyte)((val>>16)&0xff);
data[3] = (ALubyte)(val>>24);
fwrite(data, 1, 4, f);
}
typedef struct Recorder {
ALCdevice *mDevice;
FILE *mFile;
long mDataSizeOffset;
ALuint mDataSize;
float mRecTime;
ALuint mChannels;
ALuint mBits;
ALuint mSampleRate;
ALuint mFrameSize;
ALbyte *mBuffer;
ALsizei mBufferSize;
} Recorder;
int main(int argc, char **argv)
{
static const char optlist[] =
" --channels/-c <channels> Set channel count (1 or 2)\n"
" --bits/-b <bits> Set channel count (8, 16, or 32)\n"
" --rate/-r <rate> Set sample rate (8000 to 96000)\n"
" --time/-t <time> Time in seconds to record (1 to 10)\n"
" --outfile/-o <filename> Output filename (default: record.wav)";
const char *fname = "record.wav";
const char *devname = NULL;
const char *progname;
Recorder recorder;
long total_size;
ALenum format;
ALCenum err;
progname = argv[0];
if(argc < 2)
{
fprintf(stderr, "Record from a device to a wav file.\n\n"
"Usage: %s [-device <name>] [options...]\n\n"
"Available options:\n%s\n", progname, optlist);
return 0;
}
recorder.mDevice = NULL;
recorder.mFile = NULL;
recorder.mDataSizeOffset = 0;
recorder.mDataSize = 0;
recorder.mRecTime = 4.0f;
recorder.mChannels = 1;
recorder.mBits = 16;
recorder.mSampleRate = 44100;
recorder.mFrameSize = recorder.mChannels * recorder.mBits / 8;
recorder.mBuffer = NULL;
recorder.mBufferSize = 0;
argv++; argc--;
if(argc > 1 && strcmp(argv[0], "-device") == 0)
{
devname = argv[1];
argv += 2;
argc -= 2;
}
while(argc > 0)
{
char *end;
if(strcmp(argv[0], "--") == 0)
break;
else if(strcmp(argv[0], "--channels") == 0 || strcmp(argv[0], "-c") == 0)
{
if(argc < 2)
{
fprintf(stderr, "Missing argument for option: %s\n", argv[0]);
return 1;
}
recorder.mChannels = (ALuint)strtoul(argv[1], &end, 0);
if((recorder.mChannels != 1 && recorder.mChannels != 2) || (end && *end != '\0'))
{
fprintf(stderr, "Invalid channels: %s\n", argv[1]);
return 1;
}
argv += 2;
argc -= 2;
}
else if(strcmp(argv[0], "--bits") == 0 || strcmp(argv[0], "-b") == 0)
{
if(argc < 2)
{
fprintf(stderr, "Missing argument for option: %s\n", argv[0]);
return 1;
}
recorder.mBits = (ALuint)strtoul(argv[1], &end, 0);
if((recorder.mBits != 8 && recorder.mBits != 16 && recorder.mBits != 32) ||
(end && *end != '\0'))
{
fprintf(stderr, "Invalid bit count: %s\n", argv[1]);
return 1;
}
argv += 2;
argc -= 2;
}
else if(strcmp(argv[0], "--rate") == 0 || strcmp(argv[0], "-r") == 0)
{
if(argc < 2)
{
fprintf(stderr, "Missing argument for option: %s\n", argv[0]);
return 1;
}
recorder.mSampleRate = (ALuint)strtoul(argv[1], &end, 0);
if(!(recorder.mSampleRate >= 8000 && recorder.mSampleRate <= 96000) || (end && *end != '\0'))
{
fprintf(stderr, "Invalid sample rate: %s\n", argv[1]);
return 1;
}
argv += 2;
argc -= 2;
}
else if(strcmp(argv[0], "--time") == 0 || strcmp(argv[0], "-t") == 0)
{
if(argc < 2)
{
fprintf(stderr, "Missing argument for option: %s\n", argv[0]);
return 1;
}
recorder.mRecTime = strtof(argv[1], &end);
if(!(recorder.mRecTime >= 1.0f && recorder.mRecTime <= 10.0f) || (end && *end != '\0'))
{
fprintf(stderr, "Invalid record time: %s\n", argv[1]);
return 1;
}
argv += 2;
argc -= 2;
}
else if(strcmp(argv[0], "--outfile") == 0 || strcmp(argv[0], "-o") == 0)
{
if(argc < 2)
{
fprintf(stderr, "Missing argument for option: %s\n", argv[0]);
return 1;
}
fname = argv[1];
argv += 2;
argc -= 2;
}
else if(strcmp(argv[0], "--help") == 0 || strcmp(argv[0], "-h") == 0)
{
fprintf(stderr, "Record from a device to a wav file.\n\n"
"Usage: %s [-device <name>] [options...]\n\n"
"Available options:\n%s\n", progname, optlist);
return 0;
}
else
{
fprintf(stderr, "Invalid option '%s'.\n\n"
"Usage: %s [-device <name>] [options...]\n\n"
"Available options:\n%s\n", argv[0], progname, optlist);
return 0;
}
}
recorder.mFrameSize = recorder.mChannels * recorder.mBits / 8;
format = AL_NONE;
if(recorder.mChannels == 1)
{
if(recorder.mBits == 8)
format = AL_FORMAT_MONO8;
else if(recorder.mBits == 16)
format = AL_FORMAT_MONO16;
else if(recorder.mBits == 32)
format = AL_FORMAT_MONO_FLOAT32;
}
else if(recorder.mChannels == 2)
{
if(recorder.mBits == 8)
format = AL_FORMAT_STEREO8;
else if(recorder.mBits == 16)
format = AL_FORMAT_STEREO16;
else if(recorder.mBits == 32)
format = AL_FORMAT_STEREO_FLOAT32;
}
recorder.mDevice = alcCaptureOpenDevice(devname, recorder.mSampleRate, format, 32768);
if(!recorder.mDevice)
{
fprintf(stderr, "Failed to open %s, %s %d-bit, %s, %dhz (%d samples)\n",
devname ? devname : "default device",
(recorder.mBits == 32) ? "Float" :
(recorder.mBits != 8) ? "Signed" : "Unsigned", recorder.mBits,
(recorder.mChannels == 1) ? "Mono" : "Stereo", recorder.mSampleRate,
32768
);
return 1;
}
fprintf(stderr, "Opened \"%s\"\n", alcGetString(
recorder.mDevice, ALC_CAPTURE_DEVICE_SPECIFIER
));
recorder.mFile = fopen(fname, "wb");
if(!recorder.mFile)
{
fprintf(stderr, "Failed to open '%s' for writing\n", fname);
alcCaptureCloseDevice(recorder.mDevice);
return 1;
}
fputs("RIFF", recorder.mFile);
fwrite32le(0xFFFFFFFF, recorder.mFile); // 'RIFF' header len; filled in at close
fputs("WAVE", recorder.mFile);
fputs("fmt ", recorder.mFile);
fwrite32le(18, recorder.mFile); // 'fmt ' header len
// 16-bit val, format type id (1 = integer PCM, 3 = float PCM)
fwrite16le((recorder.mBits == 32) ? 0x0003 : 0x0001, recorder.mFile);
// 16-bit val, channel count
fwrite16le((ALushort)recorder.mChannels, recorder.mFile);
// 32-bit val, frequency
fwrite32le(recorder.mSampleRate, recorder.mFile);
// 32-bit val, bytes per second
fwrite32le(recorder.mSampleRate * recorder.mFrameSize, recorder.mFile);
// 16-bit val, frame size
fwrite16le((ALushort)recorder.mFrameSize, recorder.mFile);
// 16-bit val, bits per sample
fwrite16le((ALushort)recorder.mBits, recorder.mFile);
// 16-bit val, extra byte count
fwrite16le(0, recorder.mFile);
fputs("data", recorder.mFile);
fwrite32le(0xFFFFFFFF, recorder.mFile); // 'data' header len; filled in at close
recorder.mDataSizeOffset = ftell(recorder.mFile) - 4;
if(ferror(recorder.mFile) || recorder.mDataSizeOffset < 0)
{
fprintf(stderr, "Error writing header: %s\n", strerror(errno));
fclose(recorder.mFile);
alcCaptureCloseDevice(recorder.mDevice);
return 1;
}
fprintf(stderr, "Recording '%s', %s %d-bit, %s, %dhz (%g second%s)\n", fname,
(recorder.mBits == 32) ? "Float" :
(recorder.mBits != 8) ? "Signed" : "Unsigned", recorder.mBits,
(recorder.mChannels == 1) ? "Mono" : "Stereo", recorder.mSampleRate,
recorder.mRecTime, (recorder.mRecTime != 1.0f) ? "s" : ""
);
err = ALC_NO_ERROR;
alcCaptureStart(recorder.mDevice);
while((double)recorder.mDataSize/(double)recorder.mSampleRate < recorder.mRecTime &&
(err=alcGetError(recorder.mDevice)) == ALC_NO_ERROR && !ferror(recorder.mFile))
{
ALCint count = 0;
fprintf(stderr, "\rCaptured %u samples", recorder.mDataSize);
alcGetIntegerv(recorder.mDevice, ALC_CAPTURE_SAMPLES, 1, &count);
if(count < 1)
{
al_nssleep(10000000);
continue;
}
if(count > recorder.mBufferSize)
{
ALbyte *data = calloc(recorder.mFrameSize, (ALuint)count);
free(recorder.mBuffer);
recorder.mBuffer = data;
recorder.mBufferSize = count;
}
alcCaptureSamples(recorder.mDevice, recorder.mBuffer, count);
#if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN
/* Byteswap multibyte samples on big-endian systems (wav needs little-
* endian, and OpenAL gives the system's native-endian).
*/
if(recorder.mBits == 16)
{
ALCint i;
for(i = 0;i < count*recorder.mChannels;i++)
{
ALbyte b = recorder.mBuffer[i*2 + 0];
recorder.mBuffer[i*2 + 0] = recorder.mBuffer[i*2 + 1];
recorder.mBuffer[i*2 + 1] = b;
}
}
else if(recorder.mBits == 32)
{
ALCint i;
for(i = 0;i < count*recorder.mChannels;i++)
{
ALbyte b0 = recorder.mBuffer[i*4 + 0];
ALbyte b1 = recorder.mBuffer[i*4 + 1];
recorder.mBuffer[i*4 + 0] = recorder.mBuffer[i*4 + 3];
recorder.mBuffer[i*4 + 1] = recorder.mBuffer[i*4 + 2];
recorder.mBuffer[i*4 + 2] = b1;
recorder.mBuffer[i*4 + 3] = b0;
}
}
#endif
recorder.mDataSize += (ALuint)fwrite(recorder.mBuffer, recorder.mFrameSize, (ALuint)count,
recorder.mFile);
}
alcCaptureStop(recorder.mDevice);
fprintf(stderr, "\rCaptured %u samples\n", recorder.mDataSize);
if(err != ALC_NO_ERROR)
fprintf(stderr, "Got device error 0x%04x: %s\n", err, alcGetString(recorder.mDevice, err));
alcCaptureCloseDevice(recorder.mDevice);
recorder.mDevice = NULL;
free(recorder.mBuffer);
recorder.mBuffer = NULL;
recorder.mBufferSize = 0;
total_size = ftell(recorder.mFile);
if(fseek(recorder.mFile, recorder.mDataSizeOffset, SEEK_SET) == 0)
{
fwrite32le(recorder.mDataSize*recorder.mFrameSize, recorder.mFile);
if(fseek(recorder.mFile, 4, SEEK_SET) == 0)
fwrite32le((ALuint)total_size - 8, recorder.mFile);
}
fclose(recorder.mFile);
recorder.mFile = NULL;
return 0;
}

View File

@@ -0,0 +1,344 @@
/*
* OpenAL Reverb Example
*
* Copyright (c) 2012 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains an example for applying reverb to a sound. */
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "AL/efx.h"
#include "AL/efx-presets.h"
#include "common/alhelpers.h"
/* Effect object functions */
static LPALGENEFFECTS alGenEffects;
static LPALDELETEEFFECTS alDeleteEffects;
static LPALISEFFECT alIsEffect;
static LPALEFFECTI alEffecti;
static LPALEFFECTIV alEffectiv;
static LPALEFFECTF alEffectf;
static LPALEFFECTFV alEffectfv;
static LPALGETEFFECTI alGetEffecti;
static LPALGETEFFECTIV alGetEffectiv;
static LPALGETEFFECTF alGetEffectf;
static LPALGETEFFECTFV alGetEffectfv;
/* Auxiliary Effect Slot object functions */
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
/* LoadEffect loads the given reverb properties into a new OpenAL effect
* object, and returns the new effect ID. */
static ALuint LoadEffect(const EFXEAXREVERBPROPERTIES *reverb)
{
ALuint effect = 0;
ALenum err;
/* Create the effect object and check if we can do EAX reverb. */
alGenEffects(1, &effect);
if(alGetEnumValue("AL_EFFECT_EAXREVERB") != 0)
{
printf("Using EAX Reverb\n");
/* EAX Reverb is available. Set the EAX effect type then load the
* reverb properties. */
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
}
else
{
printf("Using Standard Reverb\n");
/* No EAX Reverb. Set the standard reverb effect type then load the
* available reverb properties. */
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_REVERB);
alEffectf(effect, AL_REVERB_DENSITY, reverb->flDensity);
alEffectf(effect, AL_REVERB_DIFFUSION, reverb->flDiffusion);
alEffectf(effect, AL_REVERB_GAIN, reverb->flGain);
alEffectf(effect, AL_REVERB_GAINHF, reverb->flGainHF);
alEffectf(effect, AL_REVERB_DECAY_TIME, reverb->flDecayTime);
alEffectf(effect, AL_REVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
alEffectf(effect, AL_REVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
alEffectf(effect, AL_REVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
alEffectf(effect, AL_REVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
alEffectf(effect, AL_REVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
alEffectf(effect, AL_REVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
alEffectf(effect, AL_REVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
alEffecti(effect, AL_REVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
}
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL error: %s\n", alGetString(err));
if(alIsEffect(effect))
alDeleteEffects(1, &effect);
return 0;
}
return effect;
}
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
* returns the new buffer ID.
*/
static ALuint LoadSound(const char *filename)
{
ALenum err, format;
ALuint buffer;
SNDFILE *sndfile;
SF_INFO sfinfo;
short *membuf;
sf_count_t num_frames;
ALsizei num_bytes;
/* Open the audio file and check that it's usable. */
sndfile = sf_open(filename, SFM_READ, &sfinfo);
if(!sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
return 0;
}
if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
{
fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
sf_close(sndfile);
return 0;
}
/* Get the sound format, and figure out the OpenAL format */
format = AL_NONE;
if(sfinfo.channels == 1)
format = AL_FORMAT_MONO16;
else if(sfinfo.channels == 2)
format = AL_FORMAT_STEREO16;
else if(sfinfo.channels == 3)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT2D_16;
}
else if(sfinfo.channels == 4)
{
if(sf_command(sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
format = AL_FORMAT_BFORMAT3D_16;
}
if(!format)
{
fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
sf_close(sndfile);
return 0;
}
/* Decode the whole audio file to a buffer. */
membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
if(num_frames < 1)
{
free(membuf);
sf_close(sndfile);
fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
return 0;
}
num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
/* Buffer the audio data into a new buffer object, then free the data and
* close the file.
*/
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
free(membuf);
sf_close(sndfile);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(buffer && alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char **argv)
{
EFXEAXREVERBPROPERTIES reverb = EFX_REVERB_PRESET_GENERIC;
ALuint source, buffer, effect, slot;
ALenum state;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name] <filename>\n", argv[0]);
return 1;
}
/* Initialize OpenAL, and check for EFX support. */
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
if(!alcIsExtensionPresent(alcGetContextsDevice(alcGetCurrentContext()), "ALC_EXT_EFX"))
{
fprintf(stderr, "Error: EFX not supported\n");
CloseAL();
return 1;
}
/* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
LOAD_PROC(LPALGENEFFECTS, alGenEffects);
LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
LOAD_PROC(LPALISEFFECT, alIsEffect);
LOAD_PROC(LPALEFFECTI, alEffecti);
LOAD_PROC(LPALEFFECTIV, alEffectiv);
LOAD_PROC(LPALEFFECTF, alEffectf);
LOAD_PROC(LPALEFFECTFV, alEffectfv);
LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);
LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
#undef LOAD_PROC
/* Load the sound into a buffer. */
buffer = LoadSound(argv[0]);
if(!buffer)
{
CloseAL();
return 1;
}
/* Load the reverb into an effect. */
effect = LoadEffect(&reverb);
if(!effect)
{
alDeleteBuffers(1, &buffer);
CloseAL();
return 1;
}
/* Create the effect slot object. This is what "plays" an effect on sources
* that connect to it. */
slot = 0;
alGenAuxiliaryEffectSlots(1, &slot);
/* Tell the effect slot to use the loaded effect object. Note that the this
* effectively copies the effect properties. You can modify or delete the
* effect object afterward without affecting the effect slot.
*/
alAuxiliaryEffectSloti(slot, AL_EFFECTSLOT_EFFECT, (ALint)effect);
assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, (ALint)buffer);
/* Connect the source to the effect slot. This tells the source to use the
* effect slot 'slot', on send #0 with the AL_FILTER_NULL filter object.
*/
alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slot, 0, AL_FILTER_NULL);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound until it finishes. */
alSourcePlay(source);
do {
al_nssleep(10000000);
alGetSourcei(source, AL_SOURCE_STATE, &state);
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
/* All done. Delete resources, and close down OpenAL. */
alDeleteSources(1, &source);
alDeleteAuxiliaryEffectSlots(1, &slot);
alDeleteEffects(1, &effect);
alDeleteBuffers(1, &buffer);
CloseAL();
return 0;
}

View File

@@ -0,0 +1,519 @@
/*
* OpenAL Audio Stream Example
*
* Copyright (c) 2011 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains a relatively simple streaming audio player. */
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
/* Define the number of buffers and buffer size (in milliseconds) to use. 4
* buffers at 200ms each gives a nice per-chunk size, and lets the queue last
* for almost one second.
*/
#define NUM_BUFFERS 4
#define BUFFER_MILLISEC 200
typedef enum SampleType {
Int16, Float, IMA4, MSADPCM
} SampleType;
typedef struct StreamPlayer {
/* These are the buffers and source to play out through OpenAL with. */
ALuint buffers[NUM_BUFFERS];
ALuint source;
/* Handle for the audio file */
SNDFILE *sndfile;
SF_INFO sfinfo;
void *membuf;
/* The sample type and block/frame size being read for the buffer. */
SampleType sample_type;
int byteblockalign;
int sampleblockalign;
int block_count;
/* The format of the output stream (sample rate is in sfinfo) */
ALenum format;
} StreamPlayer;
static StreamPlayer *NewPlayer(void);
static void DeletePlayer(StreamPlayer *player);
static int OpenPlayerFile(StreamPlayer *player, const char *filename);
static void ClosePlayerFile(StreamPlayer *player);
static int StartPlayer(StreamPlayer *player);
static int UpdatePlayer(StreamPlayer *player);
/* Creates a new player object, and allocates the needed OpenAL source and
* buffer objects. Error checking is simplified for the purposes of this
* example, and will cause an abort if needed.
*/
static StreamPlayer *NewPlayer(void)
{
StreamPlayer *player;
player = calloc(1, sizeof(*player));
assert(player != NULL);
/* Generate the buffers and source */
alGenBuffers(NUM_BUFFERS, player->buffers);
assert(alGetError() == AL_NO_ERROR && "Could not create buffers");
alGenSources(1, &player->source);
assert(alGetError() == AL_NO_ERROR && "Could not create source");
/* Set parameters so mono sources play out the front-center speaker and
* won't distance attenuate. */
alSource3i(player->source, AL_POSITION, 0, 0, -1);
alSourcei(player->source, AL_SOURCE_RELATIVE, AL_TRUE);
alSourcei(player->source, AL_ROLLOFF_FACTOR, 0);
assert(alGetError() == AL_NO_ERROR && "Could not set source parameters");
return player;
}
/* Destroys a player object, deleting the source and buffers. No error handling
* since these calls shouldn't fail with a properly-made player object. */
static void DeletePlayer(StreamPlayer *player)
{
ClosePlayerFile(player);
alDeleteSources(1, &player->source);
alDeleteBuffers(NUM_BUFFERS, player->buffers);
if(alGetError() != AL_NO_ERROR)
fprintf(stderr, "Failed to delete object IDs\n");
memset(player, 0, sizeof(*player));
free(player);
}
/* Opens the first audio stream of the named file. If a file is already open,
* it will be closed first. */
static int OpenPlayerFile(StreamPlayer *player, const char *filename)
{
int byteblockalign=0, splblockalign=0;
ClosePlayerFile(player);
/* Open the audio file and check that it's usable. */
player->sndfile = sf_open(filename, SFM_READ, &player->sfinfo);
if(!player->sndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(NULL));
return 0;
}
/* Detect a suitable format to load. Formats like Vorbis and Opus use float
* natively, so load as float to avoid clipping when possible. Formats
* larger than 16-bit can also use float to preserve a bit more precision.
*/
switch((player->sfinfo.format&SF_FORMAT_SUBMASK))
{
case SF_FORMAT_PCM_24:
case SF_FORMAT_PCM_32:
case SF_FORMAT_FLOAT:
case SF_FORMAT_DOUBLE:
case SF_FORMAT_VORBIS:
case SF_FORMAT_OPUS:
case SF_FORMAT_ALAC_20:
case SF_FORMAT_ALAC_24:
case SF_FORMAT_ALAC_32:
case 0x0080/*SF_FORMAT_MPEG_LAYER_I*/:
case 0x0081/*SF_FORMAT_MPEG_LAYER_II*/:
case 0x0082/*SF_FORMAT_MPEG_LAYER_III*/:
if(alIsExtensionPresent("AL_EXT_FLOAT32"))
player->sample_type = Float;
break;
case SF_FORMAT_IMA_ADPCM:
/* ADPCM formats require setting a block alignment as specified in the
* file, which needs to be read from the wave 'fmt ' chunk manually
* since libsndfile doesn't provide it in a format-agnostic way.
*/
if(player->sfinfo.channels <= 2
&& (player->sfinfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_EXT_IMA4")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
player->sample_type = IMA4;
break;
case SF_FORMAT_MS_ADPCM:
if(player->sfinfo.channels <= 2
&& (player->sfinfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_SOFT_MSADPCM")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
player->sample_type = MSADPCM;
break;
}
if(player->sample_type == IMA4 || player->sample_type == MSADPCM)
{
/* For ADPCM, lookup the wave file's "fmt " chunk, which is a
* WAVEFORMATEX-based structure for the audio format.
*/
SF_CHUNK_INFO inf = { "fmt ", 4, 0, NULL };
SF_CHUNK_ITERATOR *iter = sf_get_chunk_iterator(player->sndfile, &inf);
/* If there's an issue getting the chunk or block alignment, load as
* 16-bit and have libsndfile do the conversion.
*/
if(!iter || sf_get_chunk_size(iter, &inf) != SF_ERR_NO_ERROR || inf.datalen < 14)
player->sample_type = Int16;
else
{
ALubyte *fmtbuf = calloc(inf.datalen, 1);
inf.data = fmtbuf;
if(sf_get_chunk_data(iter, &inf) != SF_ERR_NO_ERROR)
player->sample_type = Int16;
else
{
/* Read the nBlockAlign field, and convert from bytes- to
* samples-per-block (verifying it's valid by converting back
* and comparing to the original value).
*/
byteblockalign = fmtbuf[12] | (fmtbuf[13]<<8);
if(player->sample_type == IMA4)
{
splblockalign = (byteblockalign/player->sfinfo.channels - 4)/4*8 + 1;
if(splblockalign < 1
|| ((splblockalign-1)/2 + 4)*player->sfinfo.channels != byteblockalign)
player->sample_type = Int16;
}
else
{
splblockalign = (byteblockalign/player->sfinfo.channels - 7)*2 + 2;
if(splblockalign < 2
|| ((splblockalign-2)/2 + 7)*player->sfinfo.channels != byteblockalign)
player->sample_type = Int16;
}
}
free(fmtbuf);
}
}
if(player->sample_type == Int16)
{
player->sampleblockalign = 1;
player->byteblockalign = player->sfinfo.channels * 2;
}
else if(player->sample_type == Float)
{
player->sampleblockalign = 1;
player->byteblockalign = player->sfinfo.channels * 4;
}
else
{
player->sampleblockalign = splblockalign;
player->byteblockalign = byteblockalign;
}
/* Figure out the OpenAL format from the file and desired sample type. */
player->format = AL_NONE;
if(player->sfinfo.channels == 1)
{
if(player->sample_type == Int16)
player->format = AL_FORMAT_MONO16;
else if(player->sample_type == Float)
player->format = AL_FORMAT_MONO_FLOAT32;
else if(player->sample_type == IMA4)
player->format = AL_FORMAT_MONO_IMA4;
else if(player->sample_type == MSADPCM)
player->format = AL_FORMAT_MONO_MSADPCM_SOFT;
}
else if(player->sfinfo.channels == 2)
{
if(player->sample_type == Int16)
player->format = AL_FORMAT_STEREO16;
else if(player->sample_type == Float)
player->format = AL_FORMAT_STEREO_FLOAT32;
else if(player->sample_type == IMA4)
player->format = AL_FORMAT_STEREO_IMA4;
else if(player->sample_type == MSADPCM)
player->format = AL_FORMAT_STEREO_MSADPCM_SOFT;
}
else if(player->sfinfo.channels == 3)
{
if(sf_command(player->sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(player->sample_type == Int16)
player->format = AL_FORMAT_BFORMAT2D_16;
else if(player->sample_type == Float)
player->format = AL_FORMAT_BFORMAT2D_FLOAT32;
}
}
else if(player->sfinfo.channels == 4)
{
if(sf_command(player->sndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(player->sample_type == Int16)
player->format = AL_FORMAT_BFORMAT3D_16;
else if(player->sample_type == Float)
player->format = AL_FORMAT_BFORMAT3D_FLOAT32;
}
}
if(!player->format)
{
fprintf(stderr, "Unsupported channel count: %d\n", player->sfinfo.channels);
sf_close(player->sndfile);
player->sndfile = NULL;
return 0;
}
player->block_count = player->sfinfo.samplerate / player->sampleblockalign;
player->block_count = player->block_count * BUFFER_MILLISEC / 1000;
player->membuf = malloc((size_t)(player->block_count * player->byteblockalign));
return 1;
}
/* Closes the audio file stream */
static void ClosePlayerFile(StreamPlayer *player)
{
if(player->sndfile)
sf_close(player->sndfile);
player->sndfile = NULL;
free(player->membuf);
player->membuf = NULL;
if(player->sampleblockalign > 1)
{
ALsizei i;
for(i = 0;i < NUM_BUFFERS;i++)
alBufferi(player->buffers[i], AL_UNPACK_BLOCK_ALIGNMENT_SOFT, 0);
player->sampleblockalign = 0;
player->byteblockalign = 0;
}
}
/* Prebuffers some audio from the file, and starts playing the source */
static int StartPlayer(StreamPlayer *player)
{
ALsizei i;
/* Rewind the source position and clear the buffer queue */
alSourceRewind(player->source);
alSourcei(player->source, AL_BUFFER, 0);
/* Fill the buffer queue */
for(i = 0;i < NUM_BUFFERS;i++)
{
sf_count_t slen;
/* Get some data to give it to the buffer */
if(player->sample_type == Int16)
{
slen = sf_readf_short(player->sndfile, player->membuf,
player->block_count * player->sampleblockalign);
if(slen < 1) break;
slen *= player->byteblockalign;
}
else if(player->sample_type == Float)
{
slen = sf_readf_float(player->sndfile, player->membuf,
player->block_count * player->sampleblockalign);
if(slen < 1) break;
slen *= player->byteblockalign;
}
else
{
slen = sf_read_raw(player->sndfile, player->membuf,
player->block_count * player->byteblockalign);
if(slen > 0) slen -= slen%player->byteblockalign;
if(slen < 1) break;
}
if(player->sampleblockalign > 1)
alBufferi(player->buffers[i], AL_UNPACK_BLOCK_ALIGNMENT_SOFT,
player->sampleblockalign);
alBufferData(player->buffers[i], player->format, player->membuf, (ALsizei)slen,
player->sfinfo.samplerate);
}
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error buffering for playback\n");
return 0;
}
/* Now queue and start playback! */
alSourceQueueBuffers(player->source, i, player->buffers);
alSourcePlay(player->source);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error starting playback\n");
return 0;
}
return 1;
}
static int UpdatePlayer(StreamPlayer *player)
{
ALint processed, state;
/* Get relevant source info */
alGetSourcei(player->source, AL_SOURCE_STATE, &state);
alGetSourcei(player->source, AL_BUFFERS_PROCESSED, &processed);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error checking source state\n");
return 0;
}
/* Unqueue and handle each processed buffer */
while(processed > 0)
{
ALuint bufid;
sf_count_t slen;
alSourceUnqueueBuffers(player->source, 1, &bufid);
processed--;
/* Read the next chunk of data, refill the buffer, and queue it
* back on the source */
if(player->sample_type == Int16)
{
slen = sf_readf_short(player->sndfile, player->membuf,
player->block_count * player->sampleblockalign);
if(slen > 0) slen *= player->byteblockalign;
}
else if(player->sample_type == Float)
{
slen = sf_readf_float(player->sndfile, player->membuf,
player->block_count * player->sampleblockalign);
if(slen > 0) slen *= player->byteblockalign;
}
else
{
slen = sf_read_raw(player->sndfile, player->membuf,
player->block_count * player->byteblockalign);
if(slen > 0) slen -= slen%player->byteblockalign;
}
if(slen > 0)
{
alBufferData(bufid, player->format, player->membuf, (ALsizei)slen,
player->sfinfo.samplerate);
alSourceQueueBuffers(player->source, 1, &bufid);
}
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error buffering data\n");
return 0;
}
}
/* Make sure the source hasn't underrun */
if(state != AL_PLAYING && state != AL_PAUSED)
{
ALint queued;
/* If no buffers are queued, playback is finished */
alGetSourcei(player->source, AL_BUFFERS_QUEUED, &queued);
if(queued == 0)
return 0;
alSourcePlay(player->source);
if(alGetError() != AL_NO_ERROR)
{
fprintf(stderr, "Error restarting playback\n");
return 0;
}
}
return 1;
}
int main(int argc, char **argv)
{
StreamPlayer *player;
int i;
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] <filenames...>\n", argv[0]);
return 1;
}
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
player = NewPlayer();
/* Play each file listed on the command line */
for(i = 0;i < argc;i++)
{
const char *namepart;
if(!OpenPlayerFile(player, argv[i]))
continue;
/* Get the name portion, without the path, for display. */
namepart = strrchr(argv[i], '/');
if(namepart || (namepart=strrchr(argv[i], '\\')))
namepart++;
else
namepart = argv[i];
printf("Playing: %s (%s, %dhz)\n", namepart, FormatName(player->format),
player->sfinfo.samplerate);
fflush(stdout);
if(!StartPlayer(player))
{
ClosePlayerFile(player);
continue;
}
while(UpdatePlayer(player))
al_nssleep(10000000);
/* All done with this file. Close it and go to the next */
ClosePlayerFile(player);
}
printf("Done.\n");
/* All files done. Delete the player, and close down OpenAL */
DeletePlayer(player);
player = NULL;
CloseAL();
return 0;
}

View File

@@ -0,0 +1,551 @@
/*
* OpenAL Callback-based Stream Example
*
* Copyright (c) 2020 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains a streaming audio player using a callback buffer. */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <stdexcept>
#include <string>
#include <thread>
#include <vector>
#include "sndfile.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
namespace {
using std::chrono::seconds;
using std::chrono::nanoseconds;
LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
struct StreamPlayer {
/* A lockless ring-buffer (supports single-provider, single-consumer
* operation).
*/
std::unique_ptr<ALbyte[]> mBufferData;
size_t mBufferDataSize{0};
std::atomic<size_t> mReadPos{0};
std::atomic<size_t> mWritePos{0};
size_t mSamplesPerBlock{1};
size_t mBytesPerBlock{1};
enum class SampleType {
Int16, Float, IMA4, MSADPCM
};
SampleType mSampleFormat{SampleType::Int16};
/* The buffer to get the callback, and source to play with. */
ALuint mBuffer{0}, mSource{0};
size_t mStartOffset{0};
/* Handle for the audio file to decode. */
SNDFILE *mSndfile{nullptr};
SF_INFO mSfInfo{};
size_t mDecoderOffset{0};
/* The format of the callback samples. */
ALenum mFormat;
StreamPlayer()
{
alGenBuffers(1, &mBuffer);
if(alGetError() != AL_NO_ERROR)
throw std::runtime_error{"alGenBuffers failed"};
alGenSources(1, &mSource);
if(alGetError() != AL_NO_ERROR)
{
alDeleteBuffers(1, &mBuffer);
throw std::runtime_error{"alGenSources failed"};
}
}
~StreamPlayer()
{
alDeleteSources(1, &mSource);
alDeleteBuffers(1, &mBuffer);
if(mSndfile)
sf_close(mSndfile);
}
void close()
{
if(mSamplesPerBlock > 1)
alBufferi(mBuffer, AL_UNPACK_BLOCK_ALIGNMENT_SOFT, 0);
if(mSndfile)
{
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
sf_close(mSndfile);
mSndfile = nullptr;
}
}
bool open(const char *filename)
{
close();
/* Open the file and figure out the OpenAL format. */
mSndfile = sf_open(filename, SFM_READ, &mSfInfo);
if(!mSndfile)
{
fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(mSndfile));
return false;
}
switch((mSfInfo.format&SF_FORMAT_SUBMASK))
{
case SF_FORMAT_PCM_24:
case SF_FORMAT_PCM_32:
case SF_FORMAT_FLOAT:
case SF_FORMAT_DOUBLE:
case SF_FORMAT_VORBIS:
case SF_FORMAT_OPUS:
case SF_FORMAT_ALAC_20:
case SF_FORMAT_ALAC_24:
case SF_FORMAT_ALAC_32:
case 0x0080/*SF_FORMAT_MPEG_LAYER_I*/:
case 0x0081/*SF_FORMAT_MPEG_LAYER_II*/:
case 0x0082/*SF_FORMAT_MPEG_LAYER_III*/:
if(alIsExtensionPresent("AL_EXT_FLOAT32"))
mSampleFormat = SampleType::Float;
break;
case SF_FORMAT_IMA_ADPCM:
if(mSfInfo.channels <= 2 && (mSfInfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_EXT_IMA4")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
mSampleFormat = SampleType::IMA4;
break;
case SF_FORMAT_MS_ADPCM:
if(mSfInfo.channels <= 2 && (mSfInfo.format&SF_FORMAT_TYPEMASK) == SF_FORMAT_WAV
&& alIsExtensionPresent("AL_SOFT_MSADPCM")
&& alIsExtensionPresent("AL_SOFT_block_alignment"))
mSampleFormat = SampleType::MSADPCM;
break;
}
int splblocksize{}, byteblocksize{};
if(mSampleFormat == SampleType::IMA4 || mSampleFormat == SampleType::MSADPCM)
{
SF_CHUNK_INFO inf{ "fmt ", 4, 0, nullptr };
SF_CHUNK_ITERATOR *iter = sf_get_chunk_iterator(mSndfile, &inf);
if(!iter || sf_get_chunk_size(iter, &inf) != SF_ERR_NO_ERROR || inf.datalen < 14)
mSampleFormat = SampleType::Int16;
else
{
auto fmtbuf = std::make_unique<ALubyte[]>(inf.datalen);
inf.data = fmtbuf.get();
if(sf_get_chunk_data(iter, &inf) != SF_ERR_NO_ERROR)
mSampleFormat = SampleType::Int16;
else
{
byteblocksize = fmtbuf[12] | (fmtbuf[13]<<8u);
if(mSampleFormat == SampleType::IMA4)
{
splblocksize = (byteblocksize/mSfInfo.channels - 4)/4*8 + 1;
if(splblocksize < 1
|| ((splblocksize-1)/2 + 4)*mSfInfo.channels != byteblocksize)
mSampleFormat = SampleType::Int16;
}
else
{
splblocksize = (byteblocksize/mSfInfo.channels - 7)*2 + 2;
if(splblocksize < 2
|| ((splblocksize-2)/2 + 7)*mSfInfo.channels != byteblocksize)
mSampleFormat = SampleType::Int16;
}
}
}
}
if(mSampleFormat == SampleType::Int16)
{
mSamplesPerBlock = 1;
mBytesPerBlock = static_cast<size_t>(mSfInfo.channels * 2);
}
else if(mSampleFormat == SampleType::Float)
{
mSamplesPerBlock = 1;
mBytesPerBlock = static_cast<size_t>(mSfInfo.channels * 4);
}
else
{
mSamplesPerBlock = static_cast<size_t>(splblocksize);
mBytesPerBlock = static_cast<size_t>(byteblocksize);
}
mFormat = AL_NONE;
if(mSfInfo.channels == 1)
{
if(mSampleFormat == SampleType::Int16)
mFormat = AL_FORMAT_MONO16;
else if(mSampleFormat == SampleType::Float)
mFormat = AL_FORMAT_MONO_FLOAT32;
else if(mSampleFormat == SampleType::IMA4)
mFormat = AL_FORMAT_MONO_IMA4;
else if(mSampleFormat == SampleType::MSADPCM)
mFormat = AL_FORMAT_MONO_MSADPCM_SOFT;
}
else if(mSfInfo.channels == 2)
{
if(mSampleFormat == SampleType::Int16)
mFormat = AL_FORMAT_STEREO16;
else if(mSampleFormat == SampleType::Float)
mFormat = AL_FORMAT_STEREO_FLOAT32;
else if(mSampleFormat == SampleType::IMA4)
mFormat = AL_FORMAT_STEREO_IMA4;
else if(mSampleFormat == SampleType::MSADPCM)
mFormat = AL_FORMAT_STEREO_MSADPCM_SOFT;
}
else if(mSfInfo.channels == 3)
{
if(sf_command(mSndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(mSampleFormat == SampleType::Int16)
mFormat = AL_FORMAT_BFORMAT2D_16;
else if(mSampleFormat == SampleType::Float)
mFormat = AL_FORMAT_BFORMAT2D_FLOAT32;
}
}
else if(mSfInfo.channels == 4)
{
if(sf_command(mSndfile, SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
{
if(mSampleFormat == SampleType::Int16)
mFormat = AL_FORMAT_BFORMAT3D_16;
else if(mSampleFormat == SampleType::Float)
mFormat = AL_FORMAT_BFORMAT3D_FLOAT32;
}
}
if(!mFormat)
{
fprintf(stderr, "Unsupported channel count: %d\n", mSfInfo.channels);
sf_close(mSndfile);
mSndfile = nullptr;
return false;
}
/* Set a 1s ring buffer size. */
size_t numblocks{(static_cast<ALuint>(mSfInfo.samplerate) + mSamplesPerBlock-1)
/ mSamplesPerBlock};
mBufferDataSize = static_cast<ALuint>(numblocks * mBytesPerBlock);
mBufferData.reset(new ALbyte[mBufferDataSize]);
mReadPos.store(0, std::memory_order_relaxed);
mWritePos.store(0, std::memory_order_relaxed);
mDecoderOffset = 0;
return true;
}
/* The actual C-style callback just forwards to the non-static method. Not
* strictly needed and the compiler will optimize it to a normal function,
* but it allows the callback implementation to have a nice 'this' pointer
* with normal member access.
*/
static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size)
{ return static_cast<StreamPlayer*>(userptr)->bufferCallback(data, size); }
ALsizei bufferCallback(void *data, ALsizei size)
{
/* NOTE: The callback *MUST* be real-time safe! That means no blocking,
* no allocations or deallocations, no I/O, no page faults, or calls to
* functions that could do these things (this includes calling to
* libraries like SDL_sound, libsndfile, ffmpeg, etc). Nothing should
* unexpectedly stall this call since the audio has to get to the
* device on time.
*/
ALsizei got{0};
size_t roffset{mReadPos.load(std::memory_order_acquire)};
while(got < size)
{
/* If the write offset == read offset, there's nothing left in the
* ring-buffer. Break from the loop and give what has been written.
*/
const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
if(woffset == roffset) break;
/* If the write offset is behind the read offset, the readable
* portion wrapped around. Just read up to the end of the buffer in
* that case, otherwise read up to the write offset. Also limit the
* amount to copy given how much is remaining to write.
*/
size_t todo{((woffset < roffset) ? mBufferDataSize : woffset) - roffset};
todo = std::min<size_t>(todo, static_cast<ALuint>(size-got));
/* Copy from the ring buffer to the provided output buffer. Wrap
* the resulting read offset if it reached the end of the ring-
* buffer.
*/
memcpy(data, &mBufferData[roffset], todo);
data = static_cast<ALbyte*>(data) + todo;
got += static_cast<ALsizei>(todo);
roffset += todo;
if(roffset == mBufferDataSize)
roffset = 0;
}
/* Finally, store the updated read offset, and return how many bytes
* have been written.
*/
mReadPos.store(roffset, std::memory_order_release);
return got;
}
bool prepare()
{
if(mSamplesPerBlock > 1)
alBufferi(mBuffer, AL_UNPACK_BLOCK_ALIGNMENT_SOFT, static_cast<int>(mSamplesPerBlock));
alBufferCallbackSOFT(mBuffer, mFormat, mSfInfo.samplerate, bufferCallbackC, this);
alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffer));
if(ALenum err{alGetError()})
{
fprintf(stderr, "Failed to set callback: %s (0x%04x)\n", alGetString(err), err);
return false;
}
return true;
}
bool update()
{
ALenum state;
ALint pos;
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &pos);
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
size_t woffset{mWritePos.load(std::memory_order_acquire)};
if(state != AL_INITIAL)
{
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
roffset};
/* For a stopped (underrun) source, the current playback offset is
* the current decoder offset excluding the readable buffered data.
* For a playing/paused source, it's the source's offset including
* the playback offset the source was started with.
*/
const size_t curtime{((state == AL_STOPPED)
? (mDecoderOffset-readable) / mBytesPerBlock * mSamplesPerBlock
: (static_cast<ALuint>(pos) + mStartOffset/mBytesPerBlock*mSamplesPerBlock))
/ static_cast<ALuint>(mSfInfo.samplerate)};
printf("\r%3zus (%3zu%% full)", curtime, readable * 100 / mBufferDataSize);
}
else
fputs("Starting...", stdout);
fflush(stdout);
while(!sf_error(mSndfile))
{
size_t read_bytes;
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
if(roffset > woffset)
{
/* Note that the ring buffer's writable space is one byte less
* than the available area because the write offset ending up
* at the read offset would be interpreted as being empty
* instead of full.
*/
const size_t writable{(roffset-woffset-1) / mBytesPerBlock};
if(!writable) break;
if(mSampleFormat == SampleType::Int16)
{
sf_count_t num_frames{sf_readf_short(mSndfile,
reinterpret_cast<short*>(&mBufferData[woffset]),
static_cast<sf_count_t>(writable*mSamplesPerBlock))};
if(num_frames < 1) break;
read_bytes = static_cast<size_t>(num_frames) * mBytesPerBlock;
}
else if(mSampleFormat == SampleType::Float)
{
sf_count_t num_frames{sf_readf_float(mSndfile,
reinterpret_cast<float*>(&mBufferData[woffset]),
static_cast<sf_count_t>(writable*mSamplesPerBlock))};
if(num_frames < 1) break;
read_bytes = static_cast<size_t>(num_frames) * mBytesPerBlock;
}
else
{
sf_count_t numbytes{sf_read_raw(mSndfile, &mBufferData[woffset],
static_cast<sf_count_t>(writable*mBytesPerBlock))};
if(numbytes < 1) break;
read_bytes = static_cast<size_t>(numbytes);
}
woffset += read_bytes;
}
else
{
/* If the read offset is at or behind the write offset, the
* writeable area (might) wrap around. Make sure the sample
* data can fit, and calculate how much can go in front before
* wrapping.
*/
const size_t writable{(!roffset ? mBufferDataSize-woffset-1 :
(mBufferDataSize-woffset)) / mBytesPerBlock};
if(!writable) break;
if(mSampleFormat == SampleType::Int16)
{
sf_count_t num_frames{sf_readf_short(mSndfile,
reinterpret_cast<short*>(&mBufferData[woffset]),
static_cast<sf_count_t>(writable*mSamplesPerBlock))};
if(num_frames < 1) break;
read_bytes = static_cast<size_t>(num_frames) * mBytesPerBlock;
}
else if(mSampleFormat == SampleType::Float)
{
sf_count_t num_frames{sf_readf_float(mSndfile,
reinterpret_cast<float*>(&mBufferData[woffset]),
static_cast<sf_count_t>(writable*mSamplesPerBlock))};
if(num_frames < 1) break;
read_bytes = static_cast<size_t>(num_frames) * mBytesPerBlock;
}
else
{
sf_count_t numbytes{sf_read_raw(mSndfile, &mBufferData[woffset],
static_cast<sf_count_t>(writable*mBytesPerBlock))};
if(numbytes < 1) break;
read_bytes = static_cast<size_t>(numbytes);
}
woffset += read_bytes;
if(woffset == mBufferDataSize)
woffset = 0;
}
mWritePos.store(woffset, std::memory_order_release);
mDecoderOffset += read_bytes;
}
if(state != AL_PLAYING && state != AL_PAUSED)
{
/* If the source is not playing or paused, it either underrun
* (AL_STOPPED) or is just getting started (AL_INITIAL). If the
* ring buffer is empty, it's done, otherwise play the source with
* what's available.
*/
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
roffset};
if(readable == 0)
return false;
/* Store the playback offset that the source will start reading
* from, so it can be tracked during playback.
*/
mStartOffset = mDecoderOffset - readable;
alSourcePlay(mSource);
if(alGetError() != AL_NO_ERROR)
return false;
}
return true;
}
};
} // namespace
int main(int argc, char **argv)
{
/* A simple RAII container for OpenAL startup and shutdown. */
struct AudioManager {
AudioManager(char ***argv_, int *argc_)
{
if(InitAL(argv_, argc_) != 0)
throw std::runtime_error{"Failed to initialize OpenAL"};
}
~AudioManager() { CloseAL(); }
};
/* Print out usage if no arguments were specified */
if(argc < 2)
{
fprintf(stderr, "Usage: %s [-device <name>] <filenames...>\n", argv[0]);
return 1;
}
argv++; argc--;
AudioManager almgr{&argv, &argc};
if(!alIsExtensionPresent("AL_SOFT_callback_buffer"))
{
fprintf(stderr, "AL_SOFT_callback_buffer extension not available\n");
return 1;
}
alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
alGetProcAddress("alBufferCallbackSOFT"));
ALCint refresh{25};
alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
std::unique_ptr<StreamPlayer> player{new StreamPlayer{}};
/* Play each file listed on the command line */
for(int i{0};i < argc;++i)
{
if(!player->open(argv[i]))
continue;
/* Get the name portion, without the path, for display. */
const char *namepart{strrchr(argv[i], '/')};
if(namepart || (namepart=strrchr(argv[i], '\\')))
++namepart;
else
namepart = argv[i];
printf("Playing: %s (%s, %dhz)\n", namepart, FormatName(player->mFormat),
player->mSfInfo.samplerate);
fflush(stdout);
if(!player->prepare())
{
player->close();
continue;
}
while(player->update())
std::this_thread::sleep_for(nanoseconds{seconds{1}} / refresh);
putc('\n', stdout);
/* All done with this file. Close it and go to the next */
player->close();
}
/* All done. */
printf("Done.\n");
return 0;
}

View File

@@ -0,0 +1,330 @@
/*
* OpenAL Tone Generator Test
*
* Copyright (c) 2015 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains a test for generating waveforms and plays them for a
* given length of time. Intended to inspect the behavior of the mixer by
* checking the output with a spectrum analyzer and oscilloscope.
*
* TODO: This would actually be nicer as a GUI app with buttons to start and
* stop individual waveforms, include additional whitenoise and pinknoise
* generators, and have the ability to hook up EFX filters and effects.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#include "win_main_utf8.h"
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
enum WaveType {
WT_Sine,
WT_Square,
WT_Sawtooth,
WT_Triangle,
WT_Impulse,
WT_WhiteNoise,
};
static const char *GetWaveTypeName(enum WaveType type)
{
switch(type)
{
case WT_Sine: return "sine";
case WT_Square: return "square";
case WT_Sawtooth: return "sawtooth";
case WT_Triangle: return "triangle";
case WT_Impulse: return "impulse";
case WT_WhiteNoise: return "noise";
}
return "(unknown)";
}
static inline ALuint dither_rng(ALuint *seed)
{
*seed = (*seed * 96314165) + 907633515;
return *seed;
}
static void ApplySin(ALfloat *data, ALdouble g, ALuint srate, ALuint freq)
{
ALdouble smps_per_cycle = (ALdouble)srate / freq;
ALuint i;
for(i = 0;i < srate;i++)
{
ALdouble ival;
data[i] += (ALfloat)(sin(modf(i/smps_per_cycle, &ival) * 2.0*M_PI) * g);
}
}
/* Generates waveforms using additive synthesis. Each waveform is constructed
* by summing one or more sine waves, up to (and excluding) nyquist.
*/
static ALuint CreateWave(enum WaveType type, ALuint freq, ALuint srate, ALfloat gain)
{
ALuint seed = 22222;
ALuint data_size;
ALfloat *data;
ALuint buffer;
ALenum err;
ALuint i;
data_size = (ALuint)(srate * sizeof(ALfloat));
data = calloc(1, data_size);
switch(type)
{
case WT_Sine:
ApplySin(data, 1.0, srate, freq);
break;
case WT_Square:
for(i = 1;freq*i < srate/2;i+=2)
ApplySin(data, 4.0/M_PI * 1.0/i, srate, freq*i);
break;
case WT_Sawtooth:
for(i = 1;freq*i < srate/2;i++)
ApplySin(data, 2.0/M_PI * ((i&1)*2 - 1.0) / i, srate, freq*i);
break;
case WT_Triangle:
for(i = 1;freq*i < srate/2;i+=2)
ApplySin(data, 8.0/(M_PI*M_PI) * (1.0 - (i&2)) / (i*i), srate, freq*i);
break;
case WT_Impulse:
/* NOTE: Impulse isn't handled using additive synthesis, and is
* instead just a non-0 sample at a given rate. This can still be
* useful to test (other than resampling, the ALSOFT_DEFAULT_REVERB
* environment variable can prove useful here to test the reverb
* response).
*/
for(i = 0;i < srate;i++)
data[i] = (i%(srate/freq)) ? 0.0f : 1.0f;
break;
case WT_WhiteNoise:
/* NOTE: WhiteNoise is just uniform set of uncorrelated values, and
* is not influenced by the waveform frequency.
*/
for(i = 0;i < srate;i++)
{
ALuint rng0 = dither_rng(&seed);
ALuint rng1 = dither_rng(&seed);
data[i] = (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
}
break;
}
if(gain != 1.0f)
{
for(i = 0;i < srate;i++)
data[i] *= gain;
}
/* Buffer the audio data into a new buffer object. */
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, AL_FORMAT_MONO_FLOAT32, data, (ALsizei)data_size, (ALsizei)srate);
free(data);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char *argv[])
{
enum WaveType wavetype = WT_Sine;
const char *appname = argv[0];
ALuint source, buffer;
ALint last_pos, num_loops;
ALint max_loops = 4;
ALint srate = -1;
ALint tone_freq = 1000;
ALCint dev_rate;
ALenum state;
ALfloat gain = 1.0f;
int i;
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
if(!alIsExtensionPresent("AL_EXT_FLOAT32"))
{
fprintf(stderr, "Required AL_EXT_FLOAT32 extension not supported on this device!\n");
CloseAL();
return 1;
}
for(i = 0;i < argc;i++)
{
if(strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-?") == 0
|| strcmp(argv[i], "--help") == 0)
{
fprintf(stderr, "OpenAL Tone Generator\n"
"\n"
"Usage: %s [-device <name>] <options>\n"
"\n"
"Available options:\n"
" --help/-h This help text\n"
" -t <seconds> Time to play a tone (default 5 seconds)\n"
" --waveform/-w <type> Waveform type: sine (default), square, sawtooth,\n"
" triangle, impulse, noise\n"
" --freq/-f <hz> Tone frequency (default 1000 hz)\n"
" --gain/-g <gain> gain 0.0 to 1 (default 1)\n"
" --srate/-s <sample rate> Sampling rate (default output rate)\n",
appname
);
CloseAL();
return 1;
}
else if(i+1 < argc && strcmp(argv[i], "-t") == 0)
{
i++;
max_loops = atoi(argv[i]) - 1;
}
else if(i+1 < argc && (strcmp(argv[i], "--waveform") == 0 || strcmp(argv[i], "-w") == 0))
{
i++;
if(strcmp(argv[i], "sine") == 0)
wavetype = WT_Sine;
else if(strcmp(argv[i], "square") == 0)
wavetype = WT_Square;
else if(strcmp(argv[i], "sawtooth") == 0)
wavetype = WT_Sawtooth;
else if(strcmp(argv[i], "triangle") == 0)
wavetype = WT_Triangle;
else if(strcmp(argv[i], "impulse") == 0)
wavetype = WT_Impulse;
else if(strcmp(argv[i], "noise") == 0)
wavetype = WT_WhiteNoise;
else
fprintf(stderr, "Unhandled waveform: %s\n", argv[i]);
}
else if(i+1 < argc && (strcmp(argv[i], "--freq") == 0 || strcmp(argv[i], "-f") == 0))
{
i++;
tone_freq = atoi(argv[i]);
if(tone_freq < 1)
{
fprintf(stderr, "Invalid tone frequency: %s (min: 1hz)\n", argv[i]);
tone_freq = 1;
}
}
else if(i+1 < argc && (strcmp(argv[i], "--gain") == 0 || strcmp(argv[i], "-g") == 0))
{
i++;
gain = (ALfloat)atof(argv[i]);
if(gain < 0.0f || gain > 1.0f)
{
fprintf(stderr, "Invalid gain: %s (min: 0.0, max 1.0)\n", argv[i]);
gain = 1.0f;
}
}
else if(i+1 < argc && (strcmp(argv[i], "--srate") == 0 || strcmp(argv[i], "-s") == 0))
{
i++;
srate = atoi(argv[i]);
if(srate < 40)
{
fprintf(stderr, "Invalid sample rate: %s (min: 40hz)\n", argv[i]);
srate = 40;
}
}
}
{
ALCdevice *device = alcGetContextsDevice(alcGetCurrentContext());
alcGetIntegerv(device, ALC_FREQUENCY, 1, &dev_rate);
assert(alcGetError(device)==ALC_NO_ERROR && "Failed to get device sample rate");
}
if(srate < 0)
srate = dev_rate;
/* Load the sound into a buffer. */
buffer = CreateWave(wavetype, (ALuint)tone_freq, (ALuint)srate, gain);
if(!buffer)
{
CloseAL();
return 1;
}
printf("Playing %dhz %s-wave tone with %dhz sample rate and %dhz output, for %d second%s...\n",
tone_freq, GetWaveTypeName(wavetype), srate, dev_rate, max_loops+1, max_loops?"s":"");
fflush(stdout);
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, (ALint)buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound for a while. */
num_loops = 0;
last_pos = 0;
alSourcei(source, AL_LOOPING, (max_loops > 0) ? AL_TRUE : AL_FALSE);
alSourcePlay(source);
do {
ALint pos;
al_nssleep(10000000);
alGetSourcei(source, AL_SAMPLE_OFFSET, &pos);
alGetSourcei(source, AL_SOURCE_STATE, &state);
if(pos < last_pos && state == AL_PLAYING)
{
++num_loops;
if(num_loops >= max_loops)
alSourcei(source, AL_LOOPING, AL_FALSE);
printf("%d...\n", max_loops - num_loops + 1);
fflush(stdout);
}
last_pos = pos;
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
/* All done. Delete resources, and close OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
/* Close up OpenAL. */
CloseAL();
return 0;
}

View File

@@ -0,0 +1,228 @@
/*
* OpenAL Helpers
*
* Copyright (c) 2011 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains routines to help with some menial OpenAL-related tasks,
* such as opening a device and setting up a context, closing the device and
* destroying its context, converting between frame counts and byte lengths,
* finding an appropriate buffer format, and getting readable strings for
* channel configs and sample types. */
#include "alhelpers.h"
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
/* InitAL opens a device and sets up a context using default attributes, making
* the program ready to call OpenAL functions. */
int InitAL(char ***argv, int *argc)
{
const ALCchar *name;
ALCdevice *device;
ALCcontext *ctx;
/* Open and initialize a device */
device = NULL;
if(argc && argv && *argc > 1 && strcmp((*argv)[0], "-device") == 0)
{
device = alcOpenDevice((*argv)[1]);
if(!device)
fprintf(stderr, "Failed to open \"%s\", trying default\n", (*argv)[1]);
(*argv) += 2;
(*argc) -= 2;
}
if(!device)
device = alcOpenDevice(NULL);
if(!device)
{
fprintf(stderr, "Could not open a device!\n");
return 1;
}
ctx = alcCreateContext(device, NULL);
if(ctx == NULL || alcMakeContextCurrent(ctx) == ALC_FALSE)
{
if(ctx != NULL)
alcDestroyContext(ctx);
alcCloseDevice(device);
fprintf(stderr, "Could not set a context!\n");
return 1;
}
name = NULL;
if(alcIsExtensionPresent(device, "ALC_ENUMERATE_ALL_EXT"))
name = alcGetString(device, ALC_ALL_DEVICES_SPECIFIER);
if(!name || alcGetError(device) != AL_NO_ERROR)
name = alcGetString(device, ALC_DEVICE_SPECIFIER);
printf("Opened \"%s\"\n", name);
return 0;
}
/* CloseAL closes the device belonging to the current context, and destroys the
* context. */
void CloseAL(void)
{
ALCdevice *device;
ALCcontext *ctx;
ctx = alcGetCurrentContext();
if(ctx == NULL)
return;
device = alcGetContextsDevice(ctx);
alcMakeContextCurrent(NULL);
alcDestroyContext(ctx);
alcCloseDevice(device);
}
const char *FormatName(ALenum format)
{
switch(format)
{
case AL_FORMAT_MONO8: return "Mono, U8";
case AL_FORMAT_MONO16: return "Mono, S16";
case AL_FORMAT_MONO_FLOAT32: return "Mono, Float32";
case AL_FORMAT_MONO_MULAW: return "Mono, muLaw";
case AL_FORMAT_MONO_ALAW_EXT: return "Mono, aLaw";
case AL_FORMAT_MONO_IMA4: return "Mono, IMA4 ADPCM";
case AL_FORMAT_MONO_MSADPCM_SOFT: return "Mono, MS ADPCM";
case AL_FORMAT_STEREO8: return "Stereo, U8";
case AL_FORMAT_STEREO16: return "Stereo, S16";
case AL_FORMAT_STEREO_FLOAT32: return "Stereo, Float32";
case AL_FORMAT_STEREO_MULAW: return "Stereo, muLaw";
case AL_FORMAT_STEREO_ALAW_EXT: return "Stereo, aLaw";
case AL_FORMAT_STEREO_IMA4: return "Stereo, IMA4 ADPCM";
case AL_FORMAT_STEREO_MSADPCM_SOFT: return "Stereo, MS ADPCM";
case AL_FORMAT_QUAD8: return "Quadraphonic, U8";
case AL_FORMAT_QUAD16: return "Quadraphonic, S16";
case AL_FORMAT_QUAD32: return "Quadraphonic, Float32";
case AL_FORMAT_QUAD_MULAW: return "Quadraphonic, muLaw";
case AL_FORMAT_51CHN8: return "5.1 Surround, U8";
case AL_FORMAT_51CHN16: return "5.1 Surround, S16";
case AL_FORMAT_51CHN32: return "5.1 Surround, Float32";
case AL_FORMAT_51CHN_MULAW: return "5.1 Surround, muLaw";
case AL_FORMAT_61CHN8: return "6.1 Surround, U8";
case AL_FORMAT_61CHN16: return "6.1 Surround, S16";
case AL_FORMAT_61CHN32: return "6.1 Surround, Float32";
case AL_FORMAT_61CHN_MULAW: return "6.1 Surround, muLaw";
case AL_FORMAT_71CHN8: return "7.1 Surround, U8";
case AL_FORMAT_71CHN16: return "7.1 Surround, S16";
case AL_FORMAT_71CHN32: return "7.1 Surround, Float32";
case AL_FORMAT_71CHN_MULAW: return "7.1 Surround, muLaw";
case AL_FORMAT_BFORMAT2D_8: return "B-Format 2D, U8";
case AL_FORMAT_BFORMAT2D_16: return "B-Format 2D, S16";
case AL_FORMAT_BFORMAT2D_FLOAT32: return "B-Format 2D, Float32";
case AL_FORMAT_BFORMAT2D_MULAW: return "B-Format 2D, muLaw";
case AL_FORMAT_BFORMAT3D_8: return "B-Format 3D, U8";
case AL_FORMAT_BFORMAT3D_16: return "B-Format 3D, S16";
case AL_FORMAT_BFORMAT3D_FLOAT32: return "B-Format 3D, Float32";
case AL_FORMAT_BFORMAT3D_MULAW: return "B-Format 3D, muLaw";
case AL_FORMAT_UHJ2CHN8_SOFT: return "UHJ 2-channel, U8";
case AL_FORMAT_UHJ2CHN16_SOFT: return "UHJ 2-channel, S16";
case AL_FORMAT_UHJ2CHN_FLOAT32_SOFT: return "UHJ 2-channel, Float32";
case AL_FORMAT_UHJ3CHN8_SOFT: return "UHJ 3-channel, U8";
case AL_FORMAT_UHJ3CHN16_SOFT: return "UHJ 3-channel, S16";
case AL_FORMAT_UHJ3CHN_FLOAT32_SOFT: return "UHJ 3-channel, Float32";
case AL_FORMAT_UHJ4CHN8_SOFT: return "UHJ 4-channel, U8";
case AL_FORMAT_UHJ4CHN16_SOFT: return "UHJ 4-channel, S16";
case AL_FORMAT_UHJ4CHN_FLOAT32_SOFT: return "UHJ 4-channel, Float32";
}
return "Unknown Format";
}
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <mmsystem.h>
int altime_get(void)
{
static int start_time = 0;
int cur_time;
union {
FILETIME ftime;
ULARGE_INTEGER ulint;
} systime;
GetSystemTimeAsFileTime(&systime.ftime);
/* FILETIME is in 100-nanosecond units, or 1/10th of a microsecond. */
cur_time = (int)(systime.ulint.QuadPart/10000);
if(!start_time)
start_time = cur_time;
return cur_time - start_time;
}
void al_nssleep(unsigned long nsec)
{
Sleep(nsec / 1000000);
}
#else
#include <sys/time.h>
#include <unistd.h>
#include <time.h>
int altime_get(void)
{
static int start_time = 0u;
int cur_time;
#if _POSIX_TIMERS > 0
struct timespec ts;
int ret = clock_gettime(CLOCK_REALTIME, &ts);
if(ret != 0) return 0;
cur_time = (int)(ts.tv_sec*1000 + ts.tv_nsec/1000000);
#else /* _POSIX_TIMERS > 0 */
struct timeval tv;
int ret = gettimeofday(&tv, NULL);
if(ret != 0) return 0;
cur_time = (int)(tv.tv_sec*1000 + tv.tv_usec/1000);
#endif
if(!start_time)
start_time = cur_time;
return cur_time - start_time;
}
void al_nssleep(unsigned long nsec)
{
struct timespec ts, rem;
ts.tv_sec = (time_t)(nsec / 1000000000ul);
ts.tv_nsec = (long)(nsec % 1000000000ul);
while(nanosleep(&ts, &rem) == -1 && errno == EINTR)
ts = rem;
}
#endif

View File

@@ -0,0 +1,38 @@
#ifndef ALHELPERS_H
#define ALHELPERS_H
#include "AL/al.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Some helper functions to get the name from the format enums. */
const char *FormatName(ALenum type);
/* Easy device init/deinit functions. InitAL returns 0 on success. */
int InitAL(char ***argv, int *argc);
void CloseAL(void);
/* Cross-platform timeget and sleep functions. */
int altime_get(void);
void al_nssleep(unsigned long nsec);
/* C doesn't allow casting between function and non-function pointer types, so
* with C99 we need to use a union to reinterpret the pointer type. Pre-C99
* still needs to use a normal cast and live with the warning (C++ is fine with
* a regular reinterpret_cast).
*/
#if __STDC_VERSION__ >= 199901L
#define FUNCTION_CAST(T, ptr) (union{void *p; T f;}){ptr}.f
#elif defined(__cplusplus)
#define FUNCTION_CAST(T, ptr) reinterpret_cast<T>(ptr)
#else
#define FUNCTION_CAST(T, ptr) (T)(ptr)
#endif
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* ALHELPERS_H */