First Commit

This commit is contained in:
2025-02-06 22:24:29 +08:00
parent ed7df4c81e
commit 7539e6a53c
18116 changed files with 6181499 additions and 0 deletions

View File

@@ -0,0 +1,64 @@
// (C) Copyright 2012 Vicente J. Botet Escriba
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#ifndef BOOST_NO_EXCEPTIONS
#include <boost/thread/futures/future_error_code.hpp>
#include <string>
namespace boost
{
namespace thread_detail
{
class future_error_category :
public boost::system::error_category
{
public:
virtual const char* name() const BOOST_NOEXCEPT;
virtual std::string message(int ev) const;
};
const char*
future_error_category::name() const BOOST_NOEXCEPT
{
return "future";
}
std::string
future_error_category::message(int ev) const
{
switch (BOOST_SCOPED_ENUM_NATIVE(future_errc)(ev))
{
case future_errc::broken_promise:
return std::string("The associated promise has been destructed prior "
"to the associated state becoming ready.");
case future_errc::future_already_retrieved:
return std::string("The future has already been retrieved from "
"the promise or packaged_task.");
case future_errc::promise_already_satisfied:
return std::string("The state of the promise has already been set.");
case future_errc::no_state:
return std::string("Operation not permitted on an object without "
"an associated state.");
}
return std::string("unspecified future_errc value\n");
}
future_error_category future_error_category_var;
}
BOOST_THREAD_DECL
const system::error_category&
future_category() BOOST_NOEXCEPT
{
return thread_detail::future_error_category_var;
}
}
#endif

View File

@@ -0,0 +1,82 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#ifdef BOOST_THREAD_ONCE_ATOMIC
#include "./once_atomic.cpp"
#else
#define __STDC_CONSTANT_MACROS
#include <boost/thread/once.hpp>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <stdlib.h>
#include <memory>
#include <string.h> // memcmp.
namespace boost
{
namespace thread_detail
{
BOOST_THREAD_DECL uintmax_atomic_t once_global_epoch=BOOST_THREAD_DETAIL_UINTMAX_ATOMIC_MAX_C;
BOOST_THREAD_DECL pthread_mutex_t once_epoch_mutex=PTHREAD_MUTEX_INITIALIZER;
BOOST_THREAD_DECL pthread_cond_t once_epoch_cv = PTHREAD_COND_INITIALIZER;
namespace
{
pthread_key_t epoch_tss_key;
pthread_once_t epoch_tss_key_flag=PTHREAD_ONCE_INIT;
extern "C"
{
static void delete_epoch_tss_data(void* data)
{
free(data);
}
static void create_epoch_tss_key()
{
BOOST_VERIFY(!pthread_key_create(&epoch_tss_key,delete_epoch_tss_data));
}
}
#if defined BOOST_THREAD_PATCH
const pthread_once_t pthread_once_init_value=PTHREAD_ONCE_INIT;
struct BOOST_THREAD_DECL delete_epoch_tss_key_on_dlclose_t
{
delete_epoch_tss_key_on_dlclose_t()
{
}
~delete_epoch_tss_key_on_dlclose_t()
{
if(memcmp(&epoch_tss_key_flag, &pthread_once_init_value, sizeof(pthread_once_t)))
{
void* data = pthread_getspecific(epoch_tss_key);
if (data)
delete_epoch_tss_data(data);
pthread_key_delete(epoch_tss_key);
}
}
};
delete_epoch_tss_key_on_dlclose_t delete_epoch_tss_key_on_dlclose;
#endif
}
uintmax_atomic_t& get_once_per_thread_epoch()
{
BOOST_VERIFY(!pthread_once(&epoch_tss_key_flag,create_epoch_tss_key));
void* data=pthread_getspecific(epoch_tss_key);
if(!data)
{
data=malloc(sizeof(thread_detail::uintmax_atomic_t));
if(!data) BOOST_THROW_EXCEPTION(std::bad_alloc());
BOOST_VERIFY(!pthread_setspecific(epoch_tss_key,data));
*static_cast<thread_detail::uintmax_atomic_t*>(data)=BOOST_THREAD_DETAIL_UINTMAX_ATOMIC_MAX_C;
}
return *static_cast<thread_detail::uintmax_atomic_t*>(data);
}
}
}
#endif //

View File

@@ -0,0 +1,91 @@
// (C) Copyright 2013 Andrey Semashev
// (C) Copyright 2013 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//#define __STDC_CONSTANT_MACROS
#include <boost/thread/detail/config.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/pthread/pthread_helpers.hpp>
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/atomic.hpp>
#include <boost/memory_order.hpp>
#include <pthread.h>
namespace boost
{
namespace thread_detail
{
enum flag_states
{
uninitialized, in_progress, initialized
};
#ifndef BOOST_THREAD_PROVIDES_ONCE_CXX11
BOOST_STATIC_ASSERT_MSG(sizeof(atomic_int_type) == sizeof(atomic_type), "Boost.Thread: unsupported platform");
#endif
static pthread_mutex_t once_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t once_cv = PTHREAD_COND_INITIALIZER;
BOOST_THREAD_DECL bool enter_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
if (f.load(memory_order_acquire) != initialized)
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
if (f.load(memory_order_acquire) != initialized)
{
for (;;)
{
atomic_int_type expected = uninitialized;
if (f.compare_exchange_strong(expected, in_progress, memory_order_acq_rel, memory_order_acquire))
{
// We have set the flag to in_progress
return true;
}
else if (expected == initialized)
{
// Another thread managed to complete the initialization
return false;
}
else
{
// Wait until the initialization is complete
//pthread::pthread_mutex_scoped_lock lk(&once_mutex);
BOOST_VERIFY(!posix::pthread_cond_wait(&once_cv, &once_mutex));
}
}
}
}
return false;
}
BOOST_THREAD_DECL void commit_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
f.store(initialized, memory_order_release);
}
BOOST_VERIFY(!posix::pthread_cond_broadcast(&once_cv));
}
BOOST_THREAD_DECL void rollback_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
f.store(uninitialized, memory_order_release);
}
BOOST_VERIFY(!posix::pthread_cond_broadcast(&once_cv));
}
} // namespace thread_detail
} // namespace boost

View File

@@ -0,0 +1,801 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/thread_only.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/thread/xtime.hpp>
#endif
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/future.hpp>
#include <boost/thread/pthread/pthread_helpers.hpp>
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#ifdef __GLIBC__
#include <sys/sysinfo.h>
#elif defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#elif defined BOOST_HAS_UNISTD_H
#include <unistd.h>
#endif
#if defined(__VXWORKS__)
#include <vxCpuLib.h>
#endif
#include <boost/algorithm/string/split.hpp>
#include <boost/algorithm/string/trim.hpp>
#include <boost/lexical_cast.hpp>
#include <fstream>
#include <string>
#include <set>
#include <vector>
#include <string.h> // memcmp.
namespace boost
{
namespace detail
{
thread_data_base::~thread_data_base()
{
for (notify_list_t::iterator i = notify.begin(), e = notify.end();
i != e; ++i)
{
i->second->unlock();
i->first->notify_all();
}
//#ifndef BOOST_NO_EXCEPTIONS
for (async_states_t::iterator i = async_states_.begin(), e = async_states_.end();
i != e; ++i)
{
(*i)->notify_deferred();
}
//#endif
}
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
namespace
{
#ifdef BOOST_THREAD_PROVIDES_ONCE_CXX11
boost::once_flag current_thread_tls_init_flag;
#else
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
#endif
pthread_key_t current_thread_tls_key;
extern "C"
{
static void tls_destructor(void* data)
{
//boost::detail::thread_data_base* thread_info=static_cast<boost::detail::thread_data_base*>(data);
boost::detail::thread_data_ptr thread_info = static_cast<boost::detail::thread_data_base*>(data)->shared_from_this();
if(thread_info)
{
while(!thread_info->tss_data.empty() || thread_info->thread_exit_callbacks)
{
while(thread_info->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=thread_info->thread_exit_callbacks;
thread_info->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
delete current_node->func;
}
delete current_node;
}
while (!thread_info->tss_data.empty())
{
std::map<void const*,detail::tss_data_node>::iterator current
= thread_info->tss_data.begin();
if(current->second.func && (current->second.value!=0))
{
(*current->second.caller)(current->second.func,current->second.value);
}
thread_info->tss_data.erase(current);
}
}
thread_info->self.reset();
}
}
}
#if defined BOOST_THREAD_PATCH
struct delete_current_thread_tls_key_on_dlclose_t
{
delete_current_thread_tls_key_on_dlclose_t()
{
}
~delete_current_thread_tls_key_on_dlclose_t()
{
const boost::once_flag uninitialized = BOOST_ONCE_INIT;
if (memcmp(&current_thread_tls_init_flag, &uninitialized, sizeof(boost::once_flag)))
{
void* data = pthread_getspecific(current_thread_tls_key);
if (data)
tls_destructor(data);
pthread_key_delete(current_thread_tls_key);
}
}
};
delete_current_thread_tls_key_on_dlclose_t delete_current_thread_tls_key_on_dlclose;
#endif
void create_current_thread_tls_key()
{
BOOST_VERIFY(!pthread_key_create(&current_thread_tls_key,&tls_destructor));
}
}
boost::detail::thread_data_base* get_current_thread_data()
{
boost::call_once(current_thread_tls_init_flag,&create_current_thread_tls_key);
return (boost::detail::thread_data_base*)pthread_getspecific(current_thread_tls_key);
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
BOOST_VERIFY(!pthread_setspecific(current_thread_tls_key,new_data));
}
}
namespace
{
extern "C"
{
static void* thread_proxy(void* param)
{
//boost::detail::thread_data_ptr thread_info = static_cast<boost::detail::thread_data_base*>(param)->self;
boost::detail::thread_data_ptr thread_info = static_cast<boost::detail::thread_data_base*>(param)->shared_from_this();
thread_info->self.reset();
detail::set_current_thread_data(thread_info.get());
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
BOOST_TRY
{
#endif
thread_info->run();
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
}
BOOST_CATCH (thread_interrupted const&)
{
}
// Removed as it stops the debugger identifying the cause of the exception
// Unhandled exceptions still cause the application to terminate
// BOOST_CATCH(...)
// {
// throw;
//
// std::terminate();
// }
BOOST_CATCH_END
#endif
detail::tls_destructor(thread_info.get());
detail::set_current_thread_data(0);
boost::lock_guard<boost::mutex> lock(thread_info->data_mutex);
thread_info->done=true;
thread_info->done_condition.notify_all();
return 0;
}
}
}
namespace detail
{
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
interrupt_enabled=false;
#endif
}
~externally_launched_thread() {
BOOST_ASSERT(notify.empty());
notify.clear();
//#ifndef BOOST_NO_EXCEPTIONS
BOOST_ASSERT(async_states_.empty());
async_states_.clear();
//#endif
}
void run()
{}
void notify_all_at_thread_exit(condition_variable*, mutex*)
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
thread_data_base* make_external_thread_data()
{
thread_data_base* const me(detail::heap_new<externally_launched_thread>());
me->self.reset(me);
set_current_thread_data(me);
return me;
}
thread_data_base* get_or_make_current_thread_data()
{
thread_data_base* current_thread_data(get_current_thread_data());
if(!current_thread_data)
{
current_thread_data=make_external_thread_data();
}
return current_thread_data;
}
}
thread::thread() BOOST_NOEXCEPT
{}
bool thread::start_thread_noexcept()
{
thread_info->self=thread_info;
int const res = pthread_create(&thread_info->thread_handle, 0, &thread_proxy, thread_info.get());
if (res != 0)
{
thread_info->self.reset();
return false;
}
return true;
}
bool thread::start_thread_noexcept(const attributes& attr)
{
thread_info->self=thread_info;
const attributes::native_handle_type* h = attr.native_handle();
int res = pthread_create(&thread_info->thread_handle, h, &thread_proxy, thread_info.get());
if (res != 0)
{
thread_info->self.reset();
return false;
}
int detached_state;
res = pthread_attr_getdetachstate(h, &detached_state);
if (res != 0)
{
thread_info->self.reset();
return false;
}
if (PTHREAD_CREATE_DETACHED==detached_state)
{
detail::thread_data_ptr local_thread_info;
thread_info.swap(local_thread_info);
if(local_thread_info)
{
//lock_guard<mutex> lock(local_thread_info->data_mutex);
if(!local_thread_info->join_started)
{
//BOOST_VERIFY(!pthread_detach(local_thread_info->thread_handle));
local_thread_info->join_started=true;
local_thread_info->joined=true;
}
}
}
return true;
}
detail::thread_data_ptr thread::get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return thread_info;
}
bool thread::join_noexcept()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
local_thread_info->done_condition.wait(lock);
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
if(thread_info==local_thread_info)
{
thread_info.reset();
}
return true;
}
else
{
return false;
}
}
bool thread::do_try_join_until_noexcept(detail::internal_platform_timepoint const &timeout, bool& res)
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
if(!local_thread_info->done_condition.do_wait_until(lock,timeout)) break; // timeout occurred
}
if(!local_thread_info->done)
{
res=false;
return true;
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
if(thread_info==local_thread_info)
{
thread_info.reset();
}
res=true;
return true;
}
else
{
return false;
}
}
bool thread::joinable() const BOOST_NOEXCEPT
{
return (get_thread_info)()?true:false;
}
void thread::detach()
{
detail::thread_data_ptr local_thread_info;
thread_info.swap(local_thread_info);
if(local_thread_info)
{
lock_guard<mutex> lock(local_thread_info->data_mutex);
if(!local_thread_info->join_started)
{
BOOST_VERIFY(!pthread_detach(local_thread_info->thread_handle));
local_thread_info->join_started=true;
local_thread_info->joined=true;
}
}
}
namespace this_thread
{
namespace no_interruption_point
{
namespace hidden
{
void BOOST_THREAD_DECL sleep_for_internal(const detail::platform_duration& ts)
{
if (ts > detail::platform_duration::zero())
{
// Use pthread_delay_np or nanosleep whenever possible here in the no_interruption_point
// namespace because they do not provide an interruption point.
# if defined(BOOST_HAS_PTHREAD_DELAY_NP)
# if defined(__IBMCPP__) || defined(_AIX)
BOOST_VERIFY(!pthread_delay_np(const_cast<timespec*>(&ts.getTs())));
# else
BOOST_VERIFY(!pthread_delay_np(&ts.getTs()));
# endif
# elif defined(BOOST_HAS_NANOSLEEP)
nanosleep(&ts.getTs(), 0);
# else
// This should never be reached due to BOOST_THREAD_SLEEP_FOR_IS_STEADY
# endif
}
}
}
}
void yield() BOOST_NOEXCEPT
{
# if defined(BOOST_HAS_SCHED_YIELD)
BOOST_VERIFY(!sched_yield());
# elif defined(BOOST_HAS_PTHREAD_YIELD)
BOOST_VERIFY(!pthread_yield());
//# elif defined BOOST_THREAD_USES_DATETIME
// ::boost::xtime xt;
// xtime_get(&xt, TIME_UTC_);
// sleep(xt);
// sleep_for(chrono::milliseconds(0));
# else
mutex mx;
unique_lock<mutex> lock(mx);
condition_variable cond;
cond.do_wait_until(lock, detail::internal_platform_clock::now());
# endif
}
}
unsigned thread::hardware_concurrency() BOOST_NOEXCEPT
{
#if defined(PTW32_VERSION) || defined(__hpux)
return pthread_num_processors_np();
#elif defined(__APPLE__) || defined(__FreeBSD__)
int count;
size_t size=sizeof(count);
return sysctlbyname("hw.ncpu",&count,&size,NULL,0)?0:count;
#elif defined(BOOST_HAS_UNISTD_H) && defined(_SC_NPROCESSORS_ONLN)
int const count=sysconf(_SC_NPROCESSORS_ONLN);
return (count>0)?count:0;
#elif defined(__VXWORKS__)
cpuset_t set = ::vxCpuEnabledGet();
#ifdef __DCC__
int i;
for( i = 0; set; ++i)
{
set &= set -1;
}
return(i);
#else
return (__builtin_popcount(set) );
#endif
#elif defined(__GLIBC__)
return get_nprocs();
#else
return 0;
#endif
}
unsigned thread::physical_concurrency() BOOST_NOEXCEPT
{
#ifdef __linux__
try {
using namespace std;
ifstream proc_cpuinfo ("/proc/cpuinfo");
const string physical_id("physical id"), core_id("core id");
typedef std::pair<unsigned, unsigned> core_entry; // [physical ID, core id]
std::set<core_entry> cores;
core_entry current_core_entry;
string line;
while ( getline(proc_cpuinfo, line) ) {
if (line.empty())
continue;
vector<string> key_val(2);
boost::split(key_val, line, boost::is_any_of(":"));
if (key_val.size() != 2)
return hardware_concurrency();
string key = key_val[0];
string value = key_val[1];
boost::trim(key);
boost::trim(value);
if (key == physical_id) {
current_core_entry.first = boost::lexical_cast<unsigned>(value);
continue;
}
if (key == core_id) {
current_core_entry.second = boost::lexical_cast<unsigned>(value);
cores.insert(current_core_entry);
continue;
}
}
// Fall back to hardware_concurrency() in case
// /proc/cpuinfo is formatted differently than we expect.
return cores.size() != 0 ? cores.size() : hardware_concurrency();
} catch(...) {
return hardware_concurrency();
}
#elif defined(__APPLE__)
int count;
size_t size=sizeof(count);
return sysctlbyname("hw.physicalcpu",&count,&size,NULL,0)?0:count;
#else
return hardware_concurrency();
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void thread::interrupt()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
local_thread_info->interrupt_requested=true;
if(local_thread_info->current_cond)
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(local_thread_info->cond_mutex);
BOOST_VERIFY(!posix::pthread_cond_broadcast(local_thread_info->current_cond));
}
}
}
bool thread::interruption_requested() const BOOST_NOEXCEPT
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->interrupt_requested;
}
else
{
return false;
}
}
#endif
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->thread_handle;
}
else
{
return pthread_t();
}
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
namespace this_thread
{
void interruption_point()
{
#ifndef BOOST_NO_EXCEPTIONS
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> lg(thread_info->data_mutex);
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
}
#endif
}
bool interruption_enabled() BOOST_NOEXCEPT
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
return thread_info && thread_info->interrupt_enabled;
}
bool interruption_requested() BOOST_NOEXCEPT
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(!thread_info)
{
return false;
}
else
{
lock_guard<mutex> lg(thread_info->data_mutex);
return thread_info->interrupt_requested;
}
}
disable_interruption::disable_interruption() BOOST_NOEXCEPT:
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
disable_interruption::~disable_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d) BOOST_NOEXCEPT
{
if(d.interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=true;
}
}
restore_interruption::~restore_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
}
#endif
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
heap_new<thread_exit_callback_node>(func,current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
std::map<void const*,tss_data_node>::iterator current_node=
current_thread_data->tss_data.find(key);
if(current_node!=current_thread_data->tss_data.end())
{
return &current_node->second;
}
}
return 0;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return 0;
}
void add_new_tss_node(void const* key,
detail::tss_data_node::cleanup_caller_t caller,
detail::tss_data_node::cleanup_func_t func,
void* tss_data)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.insert(std::make_pair(key,tss_data_node(caller,func,tss_data)));
}
void erase_tss_node(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
current_thread_data->tss_data.erase(key);
}
}
void set_tss_data(void const* key,
detail::tss_data_node::cleanup_caller_t caller,
detail::tss_data_node::cleanup_func_t func,
void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func && (current_node->value!=0))
{
(*current_node->caller)(current_node->func,current_node->value);
}
if(func || (tss_data!=0))
{
current_node->caller=caller;
current_node->func=func;
current_node->value=tss_data;
}
else
{
erase_tss_node(key);
}
}
else if(func || (tss_data!=0))
{
add_new_tss_node(key,caller,func,tss_data);
}
}
}
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->notify_all_at_thread_exit(&cond, lk.release());
}
}
//#ifndef BOOST_NO_EXCEPTIONS
namespace detail {
void BOOST_THREAD_DECL make_ready_at_thread_exit(shared_ptr<shared_state_base> as)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->make_ready_at_thread_exit(as);
}
}
}
//#endif
}

View File

@@ -0,0 +1,38 @@
// (C) Copyright Michael Glassford 2004.
// (C) Copyright 2007 Anthony Williams
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_THREAD_WIN32) && (defined(BOOST_THREAD_BUILD_LIB) || defined(BOOST_THREAD_TEST) || defined(UNDER_CE)) && (!defined(_MSC_VER) || defined(UNDER_CE))
namespace boost
{
/*
This file is a "null" implementation of tss cleanup; it's
purpose is to to eliminate link errors in cases
where it is known that tss cleanup is not needed.
*/
void tss_cleanup_implemented(void)
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#endif //defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_LIB) && !defined(_MSC_VER)

View File

@@ -0,0 +1,992 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
// (C) Copyright 2011-2018 Vicente J. Botet Escriba
//#define BOOST_THREAD_VERSION 3
#include <boost/winapi/config.hpp>
#include <boost/thread/thread_only.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/detail/tss_hooks.hpp>
#include <boost/thread/future.hpp>
#include <boost/assert.hpp>
#include <boost/cstdint.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/date_time/posix_time/conversion.hpp>
#include <boost/thread/thread_time.hpp>
#endif
#include <boost/thread/csbl/memory/unique_ptr.hpp>
#include <memory>
#include <algorithm>
#ifndef UNDER_CE
#include <process.h>
#endif
#include <stdio.h>
#include <windows.h>
#include <boost/predef/platform.h>
#if BOOST_PLAT_WINDOWS_RUNTIME
#include <mutex>
#include <atomic>
#include <Activation.h>
#include <wrl\client.h>
#include <wrl\event.h>
#include <wrl\wrappers\corewrappers.h>
#include <wrl\ftm.h>
#include <windows.system.threading.h>
#pragma comment(lib, "runtimeobject.lib")
#endif
namespace boost
{
namespace detail
{
thread_data_base::~thread_data_base()
{
for (notify_list_t::iterator i = notify.begin(), e = notify.end();
i != e; ++i)
{
i->second->unlock();
i->first->notify_all();
}
//#ifndef BOOST_NO_EXCEPTIONS
for (async_states_t::iterator i = async_states_.begin(), e = async_states_.end();
i != e; ++i)
{
(*i)->notify_deferred();
}
//#endif
}
}
namespace
{
#ifdef BOOST_THREAD_PROVIDES_ONCE_CXX11
boost::once_flag current_thread_tls_init_flag;
#else
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
#endif
#if defined(UNDER_CE)
// Windows CE does not define the TLS_OUT_OF_INDEXES constant.
#define TLS_OUT_OF_INDEXES 0xFFFFFFFF
#endif
#if !BOOST_PLAT_WINDOWS_RUNTIME
DWORD current_thread_tls_key=TLS_OUT_OF_INDEXES;
#else
__declspec(thread) boost::detail::thread_data_base* current_thread_data_base;
#endif
void create_current_thread_tls_key()
{
tss_cleanup_implemented(); // if anyone uses TSS, we need the cleanup linked in
#if !BOOST_PLAT_WINDOWS_RUNTIME
current_thread_tls_key=TlsAlloc();
BOOST_ASSERT(current_thread_tls_key!=TLS_OUT_OF_INDEXES);
#endif
}
void cleanup_tls_key()
{
#if !BOOST_PLAT_WINDOWS_RUNTIME
if(current_thread_tls_key!=TLS_OUT_OF_INDEXES)
{
TlsFree(current_thread_tls_key);
current_thread_tls_key=TLS_OUT_OF_INDEXES;
}
#endif
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
#if BOOST_PLAT_WINDOWS_RUNTIME
current_thread_data_base = new_data;
#else
if (current_thread_tls_key != TLS_OUT_OF_INDEXES)
{
BOOST_VERIFY(TlsSetValue(current_thread_tls_key, new_data));
}
else
{
BOOST_VERIFY(false);
//boost::throw_exception(thread_resource_error());
}
#endif
}
}
namespace detail
{
thread_data_base* get_current_thread_data()
{
#if BOOST_PLAT_WINDOWS_RUNTIME
return current_thread_data_base;
#else
if (current_thread_tls_key == TLS_OUT_OF_INDEXES)
{
return 0;
}
return (detail::thread_data_base*)TlsGetValue(current_thread_tls_key);
#endif
}
}
namespace
{
#ifndef BOOST_HAS_THREADEX
// Windows CE doesn't define _beginthreadex
struct ThreadProxyData
{
typedef unsigned (__stdcall* func)(void*);
func start_address_;
void* arglist_;
ThreadProxyData(func start_address,void* arglist) : start_address_(start_address), arglist_(arglist) {}
};
DWORD WINAPI ThreadProxy(LPVOID args)
{
boost::csbl::unique_ptr<ThreadProxyData> data(reinterpret_cast<ThreadProxyData*>(args));
DWORD ret=data->start_address_(data->arglist_);
return ret;
}
inline uintptr_t _beginthreadex(void* security, unsigned stack_size, unsigned (__stdcall* start_address)(void*),
void* arglist, unsigned initflag, unsigned* thrdaddr)
{
DWORD threadID;
ThreadProxyData* data = new ThreadProxyData(start_address,arglist);
HANDLE hthread=CreateThread(static_cast<LPSECURITY_ATTRIBUTES>(security),stack_size,ThreadProxy,
data,initflag,&threadID);
if (hthread==0) {
delete data;
return 0;
}
*thrdaddr=threadID;
return reinterpret_cast<uintptr_t const>(hthread);
}
#endif
}
namespace detail
{
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
}
#if BOOST_PLAT_WINDOWS_RUNTIME
namespace detail
{
std::atomic_uint threadCount;
bool win32::scoped_winrt_thread::start(thread_func address, void *parameter, unsigned int *thrdId)
{
Microsoft::WRL::ComPtr<ABI::Windows::System::Threading::IThreadPoolStatics> threadPoolFactory;
HRESULT hr = ::Windows::Foundation::GetActivationFactory(
Microsoft::WRL::Wrappers::HStringReference(RuntimeClass_Windows_System_Threading_ThreadPool).Get(),
&threadPoolFactory);
if (hr != S_OK)
{
return false;
}
// Create event for tracking work item completion.
*thrdId = ++threadCount;
handle completionHandle = CreateEventExW(NULL, NULL, 0, EVENT_ALL_ACCESS);
if (!completionHandle)
{
return false;
}
m_completionHandle = completionHandle;
// Create new work item.
Microsoft::WRL::ComPtr<ABI::Windows::System::Threading::IWorkItemHandler> workItem =
Microsoft::WRL::Callback<Microsoft::WRL::Implements<Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::ClassicCom>, ABI::Windows::System::Threading::IWorkItemHandler, Microsoft::WRL::FtmBase>>
([address, parameter, completionHandle](ABI::Windows::Foundation::IAsyncAction *)
{
// Add a reference since we need to access the completionHandle after the thread_start_function.
// This is to handle cases where detach() was called and run_thread_exit_callbacks() would end
// up closing the handle.
::boost::detail::thread_data_base* const thread_info(reinterpret_cast<::boost::detail::thread_data_base*>(parameter));
intrusive_ptr_add_ref(thread_info);
__try
{
address(parameter);
}
__finally
{
SetEvent(completionHandle);
intrusive_ptr_release(thread_info);
}
return S_OK;
});
// Schedule work item on the threadpool.
Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncAction> asyncAction;
hr = threadPoolFactory->RunWithPriorityAndOptionsAsync(
workItem.Get(),
ABI::Windows::System::Threading::WorkItemPriority_Normal,
ABI::Windows::System::Threading::WorkItemOptions_TimeSliced,
&asyncAction);
return hr == S_OK;
}
}
#endif
namespace
{
void run_thread_exit_callbacks()
{
detail::thread_data_ptr current_thread_data(detail::get_current_thread_data(),false);
if(current_thread_data)
{
while(! current_thread_data->tss_data.empty() || current_thread_data->thread_exit_callbacks)
{
while(current_thread_data->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=current_thread_data->thread_exit_callbacks;
current_thread_data->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
boost::detail::heap_delete(current_node->func);
}
boost::detail::heap_delete(current_node);
}
while (!current_thread_data->tss_data.empty())
{
std::map<void const*,detail::tss_data_node>::iterator current
= current_thread_data->tss_data.begin();
if(current->second.func && (current->second.value!=0))
{
(*current->second.caller)(current->second.func,current->second.value);
}
current_thread_data->tss_data.erase(current);
}
}
set_current_thread_data(0);
}
}
unsigned __stdcall thread_start_function(void* param)
{
detail::thread_data_base* const thread_info(reinterpret_cast<detail::thread_data_base*>(param));
set_current_thread_data(thread_info);
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
BOOST_TRY
{
#endif
thread_info->run();
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
}
BOOST_CATCH(thread_interrupted const&)
{
}
// Unhandled exceptions still cause the application to terminate
BOOST_CATCH_END
#endif
run_thread_exit_callbacks();
return 0;
}
}
thread::thread() BOOST_NOEXCEPT
{}
bool thread::start_thread_noexcept()
{
#if BOOST_PLAT_WINDOWS_RUNTIME
intrusive_ptr_add_ref(thread_info.get());
if (!thread_info->thread_handle.start(&thread_start_function, thread_info.get(), &thread_info->id))
{
intrusive_ptr_release(thread_info.get());
return false;
}
return true;
#else
uintptr_t const new_thread=_beginthreadex(0,0,&thread_start_function,thread_info.get(),CREATE_SUSPENDED,&thread_info->id);
if(!new_thread)
{
return false;
}
intrusive_ptr_add_ref(thread_info.get());
thread_info->thread_handle=(detail::win32::handle)(new_thread);
ResumeThread(thread_info->thread_handle);
return true;
#endif
}
bool thread::start_thread_noexcept(const attributes& attr)
{
#if BOOST_PLAT_WINDOWS_RUNTIME
// Stack size isn't supported with Windows Runtime.
attr;
return start_thread_noexcept();
#else
uintptr_t const new_thread=_beginthreadex(0,static_cast<unsigned int>(attr.get_stack_size()),&thread_start_function,thread_info.get(),
CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, &thread_info->id);
if(!new_thread)
{
return false;
}
intrusive_ptr_add_ref(thread_info.get());
thread_info->thread_handle=(detail::win32::handle)(new_thread);
ResumeThread(thread_info->thread_handle);
return true;
#endif
}
thread::thread(detail::thread_data_ptr data):
thread_info(data)
{}
namespace
{
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
++count;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
interruption_enabled=false;
#endif
}
~externally_launched_thread() {
BOOST_ASSERT(notify.empty());
notify.clear();
//#ifndef BOOST_NO_EXCEPTIONS
BOOST_ASSERT(async_states_.empty());
async_states_.clear();
//#endif
}
void run()
{}
void notify_all_at_thread_exit(condition_variable*, mutex*)
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
void make_external_thread_data()
{
externally_launched_thread* me=detail::heap_new<externally_launched_thread>();
BOOST_TRY
{
set_current_thread_data(me);
}
BOOST_CATCH(...)
{
detail::heap_delete(me);
BOOST_RETHROW
}
BOOST_CATCH_END
}
detail::thread_data_base* get_or_make_current_thread_data()
{
detail::thread_data_base* current_thread_data(detail::get_current_thread_data());
if(!current_thread_data)
{
make_external_thread_data();
current_thread_data=detail::get_current_thread_data();
}
return current_thread_data;
}
}
thread::id thread::get_id() const BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_BASIC_THREAD_ID
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(!local_thread_info)
{
return 0;
}
return local_thread_info->id;
#else
return thread::id((get_thread_info)());
#endif
}
bool thread::joinable() const BOOST_NOEXCEPT
{
detail::thread_data_ptr local_thread_info = (get_thread_info)();
if(!local_thread_info)
{
return false;
}
return true;
}
bool thread::join_noexcept()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
this_thread::interruptible_wait(this->native_handle(), detail::internal_platform_timepoint::getMax());
release_handle();
return true;
}
else
{
return false;
}
}
bool thread::do_try_join_until_noexcept(detail::internal_platform_timepoint const &timeout, bool& res)
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
if(!this_thread::interruptible_wait(this->native_handle(), timeout))
{
res=false;
return true;
}
release_handle();
res=true;
return true;
}
else
{
return false;
}
}
void thread::detach()
{
release_handle();
}
void thread::release_handle()
{
thread_info=0;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void thread::interrupt()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
local_thread_info->interrupt();
}
}
bool thread::interruption_requested() const BOOST_NOEXCEPT
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
return local_thread_info.get() && (winapi::WaitForSingleObjectEx(local_thread_info->interruption_handle,0,0)==0);
}
#endif
unsigned thread::hardware_concurrency() BOOST_NOEXCEPT
{
detail::win32::system_info info;
detail::win32::get_system_info(&info);
return info.dwNumberOfProcessors;
}
unsigned thread::physical_concurrency() BOOST_NOEXCEPT
{
// a bit too strict: Windows XP with SP3 would be sufficient
#if BOOST_PLAT_WINDOWS_RUNTIME \
|| ( BOOST_USE_WINAPI_VERSION <= BOOST_WINAPI_VERSION_WINXP ) \
|| ( ( defined(__MINGW32__) && !defined(__MINGW64__) ) && _WIN32_WINNT < 0x0600)
return 0;
#else
unsigned cores = 0;
DWORD size = 0;
GetLogicalProcessorInformation(NULL, &size);
if (ERROR_INSUFFICIENT_BUFFER != GetLastError())
return 0;
const size_t Elements = size / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);
std::vector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION> buffer(Elements);
if (GetLogicalProcessorInformation(&buffer.front(), &size) == FALSE)
return 0;
for (size_t i = 0; i < Elements; ++i) {
if (buffer[i].Relationship == RelationProcessorCore)
++cores;
}
return cores;
#endif
}
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(!local_thread_info)
{
return detail::win32::invalid_handle_value;
}
#if BOOST_PLAT_WINDOWS_RUNTIME
// There is no 'real' Win32 handle so we return a handle that at least can be waited on.
return local_thread_info->thread_handle.waitable_handle();
#else
return (detail::win32::handle)local_thread_info->thread_handle;
#endif
}
detail::thread_data_ptr thread::get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return thread_info;
}
namespace this_thread
{
#ifndef UNDER_CE
#if !BOOST_PLAT_WINDOWS_RUNTIME
namespace detail_
{
typedef struct _REASON_CONTEXT {
ULONG Version;
DWORD Flags;
union {
LPWSTR SimpleReasonString;
struct {
HMODULE LocalizedReasonModule;
ULONG LocalizedReasonId;
ULONG ReasonStringCount;
LPWSTR *ReasonStrings;
} Detailed;
} Reason;
} REASON_CONTEXT, *PREASON_CONTEXT;
typedef BOOL (WINAPI *setwaitabletimerex_t)(HANDLE, const LARGE_INTEGER *, LONG, PTIMERAPCROUTINE, LPVOID, PREASON_CONTEXT, ULONG);
static inline BOOL WINAPI SetWaitableTimerEx_emulation(HANDLE hTimer, const LARGE_INTEGER *lpDueTime, LONG lPeriod, PTIMERAPCROUTINE pfnCompletionRoutine, LPVOID lpArgToCompletionRoutine, PREASON_CONTEXT WakeContext, ULONG TolerableDelay)
{
return SetWaitableTimer(hTimer, lpDueTime, lPeriod, pfnCompletionRoutine, lpArgToCompletionRoutine, FALSE);
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 6387) // MSVC sanitiser warns that GetModuleHandleA() might fail
#endif
static inline setwaitabletimerex_t SetWaitableTimerEx()
{
static setwaitabletimerex_t setwaitabletimerex_impl;
if(setwaitabletimerex_impl)
return setwaitabletimerex_impl;
void (*addr)()=(void (*)()) GetProcAddress(
#if !defined(BOOST_NO_ANSI_APIS)
GetModuleHandleA("KERNEL32.DLL"),
#else
GetModuleHandleW(L"KERNEL32.DLL"),
#endif
"SetWaitableTimerEx");
if(addr)
setwaitabletimerex_impl=(setwaitabletimerex_t) addr;
else
setwaitabletimerex_impl=&SetWaitableTimerEx_emulation;
return setwaitabletimerex_impl;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
}
#endif
#endif
bool interruptible_wait(detail::win32::handle handle_to_wait_for, detail::internal_platform_timepoint const &timeout)
{
detail::win32::handle handles[4]={0};
unsigned handle_count=0;
unsigned wait_handle_index=~0U;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
unsigned interruption_index=~0U;
#endif
unsigned timeout_index=~0U;
if(handle_to_wait_for!=detail::win32::invalid_handle_value)
{
wait_handle_index=handle_count;
handles[handle_count++]=handle_to_wait_for;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
if(detail::get_current_thread_data() && detail::get_current_thread_data()->interruption_enabled)
{
interruption_index=handle_count;
handles[handle_count++]=detail::get_current_thread_data()->interruption_handle;
}
#endif
detail::win32::handle_manager timer_handle;
#ifndef UNDER_CE
#if !BOOST_PLAT_WINDOWS_RUNTIME
// Preferentially use coalescing timers for better power consumption and timer accuracy
if(timeout != detail::internal_platform_timepoint::getMax())
{
boost::intmax_t const time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
timer_handle=CreateWaitableTimer(NULL,false,NULL);
if(timer_handle!=0)
{
ULONG const min_tolerable=32; // Empirical testing shows Windows ignores this when <= 26
ULONG const max_tolerable=1000;
ULONG tolerable=min_tolerable;
if(time_left_msec/20>tolerable) // 5%
{
tolerable=static_cast<ULONG>(time_left_msec/20);
if(tolerable>max_tolerable)
tolerable=max_tolerable;
}
LARGE_INTEGER due_time={{0,0}};
if(time_left_msec>0)
{
due_time.QuadPart=-(time_left_msec*10000); // negative indicates relative time
}
bool const set_time_succeeded=detail_::SetWaitableTimerEx()(timer_handle,&due_time,0,0,0,NULL,tolerable)!=0;
if(set_time_succeeded)
{
timeout_index=handle_count;
handles[handle_count++]=timer_handle;
}
}
}
#endif
#endif
bool const using_timer=timeout_index!=~0u;
boost::intmax_t time_left_msec(INFINITE);
if(!using_timer && timeout != detail::internal_platform_timepoint::getMax())
{
time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
if(time_left_msec < 0)
{
time_left_msec = 0;
}
}
do
{
if(handle_count)
{
unsigned long const notified_index=winapi::WaitForMultipleObjectsEx(handle_count,handles,false,static_cast<DWORD>(time_left_msec), 0);
if(notified_index<handle_count)
{
if(notified_index==wait_handle_index)
{
return true;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
else if(notified_index==interruption_index)
{
winapi::ResetEvent(detail::get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
#endif
else if(notified_index==timeout_index)
{
return false;
}
}
}
else
{
detail::win32::sleep(static_cast<unsigned long>(time_left_msec));
}
if(!using_timer && timeout != detail::internal_platform_timepoint::getMax())
{
time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
}
}
while(time_left_msec == INFINITE || time_left_msec > 0);
return false;
}
namespace no_interruption_point
{
bool non_interruptible_wait(detail::win32::handle handle_to_wait_for, detail::internal_platform_timepoint const &timeout)
{
detail::win32::handle handles[3]={0};
unsigned handle_count=0;
unsigned wait_handle_index=~0U;
unsigned timeout_index=~0U;
if(handle_to_wait_for!=detail::win32::invalid_handle_value)
{
wait_handle_index=handle_count;
handles[handle_count++]=handle_to_wait_for;
}
detail::win32::handle_manager timer_handle;
#ifndef UNDER_CE
#if !BOOST_PLAT_WINDOWS_RUNTIME
// Preferentially use coalescing timers for better power consumption and timer accuracy
if(timeout != detail::internal_platform_timepoint::getMax())
{
boost::intmax_t const time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
timer_handle=CreateWaitableTimer(NULL,false,NULL);
if(timer_handle!=0)
{
ULONG const min_tolerable=32; // Empirical testing shows Windows ignores this when <= 26
ULONG const max_tolerable=1000;
ULONG tolerable=min_tolerable;
if(time_left_msec/20>tolerable) // 5%
{
tolerable=static_cast<ULONG>(time_left_msec/20);
if(tolerable>max_tolerable)
tolerable=max_tolerable;
}
LARGE_INTEGER due_time={{0,0}};
if(time_left_msec>0)
{
due_time.QuadPart=-(time_left_msec*10000); // negative indicates relative time
}
bool const set_time_succeeded=detail_::SetWaitableTimerEx()(timer_handle,&due_time,0,0,0,NULL,tolerable)!=0;
if(set_time_succeeded)
{
timeout_index=handle_count;
handles[handle_count++]=timer_handle;
}
}
}
#endif
#endif
bool const using_timer=timeout_index!=~0u;
boost::intmax_t time_left_msec(INFINITE);
if(!using_timer && timeout != detail::internal_platform_timepoint::getMax())
{
time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
if(time_left_msec < 0)
{
time_left_msec = 0;
}
}
do
{
if(handle_count)
{
unsigned long const notified_index=winapi::WaitForMultipleObjectsEx(handle_count,handles,false,static_cast<DWORD>(time_left_msec), 0);
if(notified_index<handle_count)
{
if(notified_index==wait_handle_index)
{
return true;
}
else if(notified_index==timeout_index)
{
return false;
}
}
}
else
{
detail::win32::sleep(static_cast<unsigned long>(time_left_msec));
}
if(!using_timer && timeout != detail::internal_platform_timepoint::getMax())
{
time_left_msec = (timeout - detail::internal_platform_clock::now()).getMs();
}
}
while(time_left_msec == INFINITE || time_left_msec > 0);
return false;
}
}
thread::id get_id() BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_BASIC_THREAD_ID
#if BOOST_PLAT_WINDOWS_RUNTIME
detail::thread_data_base* current_thread_data(detail::get_current_thread_data());
if (current_thread_data)
{
return current_thread_data->id;
}
#endif
return winapi::GetCurrentThreadId();
#else
return thread::id(get_or_make_current_thread_data());
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void interruption_point()
{
if(interruption_enabled() && interruption_requested())
{
winapi::ResetEvent(detail::get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
}
bool interruption_enabled() BOOST_NOEXCEPT
{
return detail::get_current_thread_data() && detail::get_current_thread_data()->interruption_enabled;
}
bool interruption_requested() BOOST_NOEXCEPT
{
return detail::get_current_thread_data() && (winapi::WaitForSingleObjectEx(detail::get_current_thread_data()->interruption_handle,0,0)==0);
}
#endif
void yield() BOOST_NOEXCEPT
{
detail::win32::sleep(0);
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
disable_interruption::disable_interruption() BOOST_NOEXCEPT:
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
detail::get_current_thread_data()->interruption_enabled=false;
}
}
disable_interruption::~disable_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interruption_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d) BOOST_NOEXCEPT
{
if(d.interruption_was_enabled)
{
detail::get_current_thread_data()->interruption_enabled=true;
}
}
restore_interruption::~restore_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interruption_enabled=false;
}
}
#endif
}
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
heap_new<thread_exit_callback_node>(
func,current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
std::map<void const*,tss_data_node>::iterator current_node=
current_thread_data->tss_data.find(key);
if(current_node!=current_thread_data->tss_data.end())
{
return &current_node->second;
}
}
return NULL;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return NULL;
}
void add_new_tss_node(void const* key,
detail::tss_data_node::cleanup_caller_t caller,
detail::tss_data_node::cleanup_func_t func,
void* tss_data)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.insert(std::make_pair(key,tss_data_node(caller,func,tss_data)));
}
void erase_tss_node(void const* key)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.erase(key);
}
void set_tss_data(void const* key,
detail::tss_data_node::cleanup_caller_t caller,
detail::tss_data_node::cleanup_func_t func,
void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func && (current_node->value!=0))
{
(*current_node->caller)(current_node->func,current_node->value);
}
if(func || (tss_data!=0))
{
current_node->caller=caller;
current_node->func=func;
current_node->value=tss_data;
}
else
{
erase_tss_node(key);
}
}
else if(func || (tss_data!=0))
{
add_new_tss_node(key,caller,func,tss_data);
}
}
}
BOOST_THREAD_DECL void __cdecl on_process_enter()
{}
BOOST_THREAD_DECL void __cdecl on_thread_enter()
{}
BOOST_THREAD_DECL void __cdecl on_process_exit()
{
boost::cleanup_tls_key();
}
BOOST_THREAD_DECL void __cdecl on_thread_exit()
{
boost::run_thread_exit_callbacks();
}
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->notify_all_at_thread_exit(&cond, lk.release());
}
}
}

View File

@@ -0,0 +1,156 @@
// thread_primitives.cpp
//
// (C) Copyright 2018 Andrey Semashev
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/winapi/config.hpp>
#include <boost/winapi/dll.hpp>
#include <boost/winapi/time.hpp>
#include <boost/winapi/event.hpp>
#include <boost/winapi/handles.hpp>
#include <boost/winapi/thread_pool.hpp>
#include <cstdlib>
#include <boost/config.hpp>
#include <boost/cstdint.hpp>
#include <boost/memory_order.hpp>
#include <boost/atomic/atomic.hpp>
#include <boost/thread/win32/interlocked_read.hpp>
#include <boost/thread/win32/thread_primitives.hpp>
namespace boost {
namespace detail {
namespace win32 {
#if BOOST_USE_WINAPI_VERSION >= BOOST_WINAPI_VERSION_WIN6
// Directly use API from Vista and later
BOOST_THREAD_DECL boost::detail::win32::detail::gettickcount64_t gettickcount64 = &::boost::winapi::GetTickCount64;
#else // BOOST_USE_WINAPI_VERSION >= BOOST_WINAPI_VERSION_WIN6
namespace {
enum init_state
{
uninitialized = 0,
in_progress,
initialized
};
struct get_tick_count64_state
{
boost::atomic< uint64_t > ticks;
boost::atomic< init_state > init;
boost::winapi::HANDLE_ wait_event;
boost::winapi::HANDLE_ wait_handle;
};
// Zero-initialized initially
BOOST_ALIGNMENT(64) static get_tick_count64_state g_state;
//! Artifical implementation of GetTickCount64
ticks_type BOOST_WINAPI_WINAPI_CC get_tick_count64()
{
uint64_t old_state = g_state.ticks.load(boost::memory_order_acquire);
uint32_t new_ticks = boost::winapi::GetTickCount();
uint32_t old_ticks = static_cast< uint32_t >(old_state & UINT64_C(0x00000000ffffffff));
uint64_t new_state = ((old_state & UINT64_C(0xffffffff00000000)) + (static_cast< uint64_t >(new_ticks < old_ticks) << 32)) | static_cast< uint64_t >(new_ticks);
g_state.ticks.store(new_state, boost::memory_order_release);
return new_state;
}
//! The function is called periodically in the system thread pool to make sure g_state.ticks is timely updated
void BOOST_WINAPI_NTAPI_CC refresh_get_tick_count64(boost::winapi::PVOID_, boost::winapi::BOOLEAN_)
{
get_tick_count64();
}
//! Cleanup function to stop get_tick_count64 refreshes
void cleanup_get_tick_count64()
{
if (g_state.wait_handle)
{
boost::winapi::UnregisterWait(g_state.wait_handle);
g_state.wait_handle = NULL;
}
if (g_state.wait_event)
{
boost::winapi::CloseHandle(g_state.wait_event);
g_state.wait_event = NULL;
}
}
ticks_type BOOST_WINAPI_WINAPI_CC get_tick_count_init()
{
boost::winapi::HMODULE_ hKernel32 = boost::winapi::GetModuleHandleW(L"kernel32.dll");
if (hKernel32)
{
// GetProcAddress returns a pointer to some function. It can return
// pointers to different functions, so it has to return something that is
// suitable to store any pointer to function. Microsoft chose FARPROC,
// which is int (WINAPI *)() on 32-bit Windows. The user is supposed to
// know the signature of the function he requests and perform a cast
// (which is a nop on this platform). The result is a pointer to function
// with the required signature, which is bitwise equal to what
// GetProcAddress returned.
// However, gcc >= 8 warns about that.
#if defined(BOOST_GCC) && BOOST_GCC >= 80000
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-function-type"
#endif
boost::detail::win32::detail::gettickcount64_t p =
(boost::detail::win32::detail::gettickcount64_t)boost::winapi::get_proc_address(hKernel32, "GetTickCount64");
#if defined(BOOST_GCC) && BOOST_GCC >= 80000
#pragma GCC diagnostic pop
#endif
if (p)
{
// Use native API
boost::detail::interlocked_write_release((void**)&gettickcount64, (void*)p);
return p();
}
}
// No native API available. Use emulation with periodic refreshes to make sure the GetTickCount wrap arounds are properly counted.
init_state old_init = uninitialized;
if (g_state.init.compare_exchange_strong(old_init, in_progress, boost::memory_order_acq_rel, boost::memory_order_relaxed))
{
if (!g_state.wait_event)
g_state.wait_event = boost::winapi::create_anonymous_event(NULL, false, false);
if (g_state.wait_event)
{
boost::winapi::BOOL_ res = boost::winapi::RegisterWaitForSingleObject(&g_state.wait_handle, g_state.wait_event, &refresh_get_tick_count64, NULL, 0x7fffffff, boost::winapi::WT_EXECUTEINWAITTHREAD_);
if (res)
{
std::atexit(&cleanup_get_tick_count64);
boost::detail::interlocked_write_release((void**)&gettickcount64, (void*)&get_tick_count64);
g_state.init.store(initialized, boost::memory_order_release);
goto finish;
}
}
g_state.init.store(uninitialized, boost::memory_order_release);
}
finish:
return get_tick_count64();
}
} // namespace
BOOST_THREAD_DECL boost::detail::win32::detail::gettickcount64_t gettickcount64 = &get_tick_count_init;
#endif // BOOST_USE_WINAPI_VERSION >= BOOST_WINAPI_VERSION_WIN6
} // namespace win32
} // namespace detail
} // namespace boost

View File

@@ -0,0 +1,87 @@
// (C) Copyright Michael Glassford 2004.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/winapi/config.hpp>
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_DLL)
#include <boost/thread/detail/tss_hooks.hpp>
#include <windows.h>
#if defined(BOOST_BORLANDC)
extern "C" BOOL WINAPI DllEntryPoint(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#elif defined(BOOST_EMBTC)
extern "C" int _libmain(DWORD dwReason)
#elif defined(_WIN32_WCE)
extern "C" BOOL WINAPI DllMain(HANDLE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#else
extern "C" BOOL WINAPI DllMain(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#endif
{
switch(dwReason)
{
case DLL_PROCESS_ATTACH:
{
boost::on_process_enter();
boost::on_thread_enter();
break;
}
case DLL_THREAD_ATTACH:
{
boost::on_thread_enter();
break;
}
case DLL_THREAD_DETACH:
{
boost::on_thread_exit();
break;
}
case DLL_PROCESS_DETACH:
{
boost::on_thread_exit();
boost::on_process_exit();
break;
}
}
return TRUE;
}
namespace boost
{
void tss_cleanup_implemented()
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#else //defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_DLL)
#ifdef _MSC_VER
// Prevent LNK4221 warning with link=static
namespace boost { namespace link_static_warning_inhibit {
extern __declspec(dllexport) void foo() { }
} }
#endif
#endif //defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_DLL)

View File

@@ -0,0 +1,346 @@
// $Id$
// (C) Copyright Aaron W. LaFramboise, Roland Schwarz, Michael Glassford 2004.
// (C) Copyright 2007 Roland Schwarz
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/winapi/config.hpp>
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_LIB)
#if (defined(__MINGW32__) && !defined(_WIN64)) || defined(__MINGW64__) || (__MINGW64_VERSION_MAJOR)
#include <boost/thread/detail/tss_hooks.hpp>
#include <windows.h>
#include <cstdlib>
namespace boost
{
void tss_cleanup_implemented() {}
}
namespace {
void NTAPI on_tls_callback(void* , DWORD dwReason, PVOID )
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
{
boost::on_thread_exit();
break;
}
}
}
}
#if defined(__MINGW64__) || (__MINGW64_VERSION_MAJOR) || (__MINGW32__) || (__MINGW32_MAJOR_VERSION >3) || \
((__MINGW32_MAJOR_VERSION==3) && (__MINGW32_MINOR_VERSION>=18))
extern "C"
{
PIMAGE_TLS_CALLBACK __crt_xl_tls_callback__ __attribute__ ((section(".CRT$XLB"))) = on_tls_callback;
}
#else
extern "C" {
void (* after_ctors )() __attribute__((section(".ctors"))) = boost::on_process_enter;
void (* before_dtors)() __attribute__((section(".dtors"))) = boost::on_thread_exit;
void (* after_dtors )() __attribute__((section(".dtors.zzz"))) = boost::on_process_exit;
ULONG __tls_index__ = 0;
char __tls_end__ __attribute__((section(".tls$zzz"))) = 0;
char __tls_start__ __attribute__((section(".tls"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_start__ __attribute__ ((section(".CRT$XLA"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_end__ __attribute__ ((section(".CRT$XLZ"))) = 0;
}
extern "C" const IMAGE_TLS_DIRECTORY32 _tls_used __attribute__ ((section(".rdata$T"))) =
{
(DWORD) &__tls_start__,
(DWORD) &__tls_end__,
(DWORD) &__tls_index__,
(DWORD) (&__crt_xl_start__+1),
(DWORD) 0,
(DWORD) 0
};
#endif
#elif defined(_MSC_VER) && !defined(UNDER_CE)
#include <boost/thread/detail/tss_hooks.hpp>
#include <stdlib.h>
#include <windows.h>
// _pRawDllMainOrig can be defined by including boost/thread/win32/mfc_thread_init.hpp
// into your dll; it ensures that MFC-Dll-initialization will be done properly
// The following code is adapted from the MFC-Dll-init code
/*
* _pRawDllMainOrig MUST be an extern const variable, which will be aliased to
* _pDefaultRawDllMainOrig if no real user definition is present, thanks to the
* alternatename directive.
*/
// work at least with _MSC_VER 1500 (MSVC++ 9.0, VS 2008)
#if (_MSC_VER >= 1500)
extern "C" {
extern BOOL (WINAPI * const _pRawDllMainOrig)(HINSTANCE, DWORD, LPVOID);
extern BOOL (WINAPI * const _pDefaultRawDllMainOrig)(HINSTANCE, DWORD, LPVOID) = NULL;
#if defined (_M_IX86)
#pragma comment(linker, "/alternatename:__pRawDllMainOrig=__pDefaultRawDllMainOrig")
#elif defined (_M_X64) || defined (_M_ARM) || defined (_M_ARM64)
#pragma comment(linker, "/alternatename:_pRawDllMainOrig=_pDefaultRawDllMainOrig")
#else /* unknown Windows target (not x86, x64, ARM, ARM64) */
#error Unsupported platform
#endif /* defined (_M_X64) || defined (_M_ARM) || defined (_M_ARM64) */
}
#endif
//Definitions required by implementation
#if (_MSC_VER < 1300) || ((_MSC_VER > 1900) && (_MSC_VER < 1910)) // 1300 == VC++ 7.0, 1900 == VC++ 14.0, 1910 == VC++ 2017
typedef void ( __cdecl *_PVFV_ )();
typedef void ( __cdecl *_PIFV_ )();
#define INIRETSUCCESS_V
#define INIRETSUCCESS_I
#define PVAPI_V void __cdecl
#define PVAPI_I void __cdecl
#elif (_MSC_VER >= 1910)
typedef void ( __cdecl *_PVFV_ )();
typedef int ( __cdecl *_PIFV_ )();
#define INIRETSUCCESS_V
#define INIRETSUCCESS_I 0
#define PVAPI_V void __cdecl
#define PVAPI_I int __cdecl
#else
typedef int ( __cdecl *_PVFV_ )();
typedef int ( __cdecl *_PIFV_ )();
#define INIRETSUCCESS_V 0
#define INIRETSUCCESS_I 0
#define PVAPI_V int __cdecl
#define PVAPI_I int __cdecl
#endif
typedef void (NTAPI* _TLSCB)(HINSTANCE, DWORD, PVOID);
//Symbols for connection to the runtime environment
extern "C"
{
extern DWORD _tls_used; //the tls directory (located in .rdata segment)
extern _TLSCB __xl_a[], __xl_z[]; //tls initializers */
}
namespace
{
//Forward declarations
static PVAPI_I on_tls_prepare();
static PVAPI_V on_process_init();
static PVAPI_V on_process_term();
static void NTAPI on_tls_callback(HINSTANCE, DWORD, PVOID);
}
namespace boost
{
//The .CRT$Xxx information is taken from Codeguru:
//http://www.codeguru.com/Cpp/misc/misc/threadsprocesses/article.php/c6945__2/
// Variables below are not referenced anywhere and
// to not be optimized away has to have external linkage
#if (_MSC_VER >= 1400)
#pragma section(".CRT$XIU",long,read)
#pragma section(".CRT$XCU",long,read)
#pragma section(".CRT$XTU",long,read)
#pragma section(".CRT$XLC",long,read)
extern const __declspec(allocate(".CRT$XLC")) _TLSCB p_tls_callback = on_tls_callback;
extern const __declspec(allocate(".CRT$XIU")) _PIFV_ p_tls_prepare = on_tls_prepare;
extern const __declspec(allocate(".CRT$XCU")) _PVFV_ p_process_init = on_process_init;
extern const __declspec(allocate(".CRT$XTU")) _PVFV_ p_process_term = on_process_term;
#else
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(push, old_seg)
#endif
//Callback to run tls glue code first.
//I don't think it is necessary to run it
//at .CRT$XIB level, since we are only
//interested in thread detachement. But
//this could be changed easily if required.
#pragma data_seg(".CRT$XIU")
extern const _PIFV_ p_tls_prepare = on_tls_prepare;
#pragma data_seg()
//Callback after all global ctors.
#pragma data_seg(".CRT$XCU")
extern const _PVFV_ p_process_init = on_process_init;
#pragma data_seg()
//Callback for tls notifications.
#pragma data_seg(".CRT$XLB")
extern const _TLSCB p_thread_callback = on_tls_callback;
#pragma data_seg()
//Callback for termination.
#pragma data_seg(".CRT$XTU")
extern const _PVFV_ p_process_term = on_process_term;
#pragma data_seg()
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(pop, old_seg)
#endif
#endif
} // namespace boost
namespace
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4189)
#endif
PVAPI_I on_tls_prepare()
{
//The following line has an important side effect:
//if the TLS directory is not already there, it will
//be created by the linker. In other words, it forces a tls
//directory to be generated by the linker even when static tls
//(i.e. __declspec(thread)) is not used.
//The volatile should prevent the optimizer
//from removing the reference.
DWORD volatile dw = _tls_used;
#if (_MSC_VER < 1300) // 1300 == VC++ 7.0
_TLSCB* pfbegin = __xl_a;
_TLSCB* pfend = __xl_z;
_TLSCB* pfdst = pfbegin;
//pfdst = (_TLSCB*)_tls_used.AddressOfCallBacks;
//The following loop will merge the address pointers
//into a contiguous area, since the tlssup code seems
//to require this (at least on MSVC 6)
while (pfbegin < pfend)
{
if (*pfbegin != 0)
{
*pfdst = *pfbegin;
++pfdst;
}
++pfbegin;
}
*pfdst = 0;
#endif
return INIRETSUCCESS_I;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
PVAPI_V on_process_init()
{
//Schedule on_thread_exit() to be called for the main
//thread before destructors of global objects have been
//called.
//It will not be run when 'quick' exiting the
//library; however, this is the standard behaviour
//for destructors of global objects, so that
//shouldn't be a problem.
atexit(boost::on_thread_exit);
//Call Boost process entry callback here
boost::on_process_enter();
return INIRETSUCCESS_V;
}
PVAPI_V on_process_term()
{
boost::on_process_exit();
return INIRETSUCCESS_V;
}
void NTAPI on_tls_callback(HINSTANCE /*h*/, DWORD dwReason, PVOID /*pv*/)
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
boost::on_thread_exit();
break;
}
}
#if (_MSC_VER >= 1500)
BOOL WINAPI dll_callback(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
#else
BOOL WINAPI dll_callback(HINSTANCE, DWORD dwReason, LPVOID)
#endif
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
boost::on_thread_exit();
break;
case DLL_PROCESS_DETACH:
boost::on_process_exit();
break;
}
#if (_MSC_VER >= 1500)
if( _pRawDllMainOrig )
{
return _pRawDllMainOrig(hInstance, dwReason, lpReserved);
}
#endif
return true;
}
} //namespace
extern "C"
{
extern BOOL (WINAPI * const _pRawDllMain)(HINSTANCE, DWORD, LPVOID)=&dll_callback;
}
namespace boost
{
void tss_cleanup_implemented()
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#endif //defined(_MSC_VER) && !defined(UNDER_CE)
#endif //defined(BOOST_THREAD_WIN32) && defined(BOOST_THREAD_BUILD_LIB)